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Summary 
 

This deliverable presents the Techno-Economic Optimisation (TEO) module and 

includes the User and System Manuals.  

The user manual for these modules will guide and help the user understand and 

navigate the module, as part of the integrated platform. The user manual is developed 

for an average user and includes examples and infographics to promote the user-

friendliness of the platform.  

The system manual is designed for the advanced user. It is more comprehensive and 

includes the description of all the inputs and the variables, along with the coding 

specifications and a detailed presentation of all functionalities. 

It describes the functioning and use of the module. The EMB3RS project has received 

funding from the European Union’s Horizon 2020 research and innovation program 

under grant agreement No 847121. This module is part of a larger assessment toolbox 

called the ‘EMB3RS platform’. 
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Disclaimer 
 

Any dissemination of results must indicate that it reflects only the author's view and 

that the Agency and the European Commission are not responsible for any use that 

may be made of the information it contains. 
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1 Introduction 
 

The EMB3Rs platform aims to provide quantitative insights into different options for the 

potential use of excess heat and cold. This is intended to enable easier and faster 

identification of potentially interesting options for the use of excess heat and cold. To 

do this, the platform must be able to present the technical and economic situation in 

sufficient detail and provide relevant indicators for decision-making. The Techno-

Economic Optimization (TEO) module identifies the most cost-effective combinations 

of technologies for the use and transport of excess heat and cold (HC) from specific 

sources to specific sinks. The user (representing the generator of excess heat - i.e., 

the source - or a demand point - i.e., the sink) wants to evaluate the options for using 

the excess HC generated to meet the heating/cooling needs of one or more 

known/specified sinks. The goal of the optimization is to find the most cost-effective 

combination of technologies and the best match between sources and sinks that will 

meet the demand, considering the constraints imposed by regulation, heat availability, 

load profiles, and techno-economic characteristics of the technologies, investment 

plans, etc. 

 

The main aim of this report is to describe the techno-economic optimisation module of 

the EMB3RS platform along with its user and system manuals. A detailed description 

of the structure and functioning of the module is provided along with its main inputs 

and outputs and instruction to run the module. The report consists of 8 sections. Firstly, 

an introduction to the TEO module is presented in Section2. The third section provides 

the system description of the module. In section 4 the instruction for running a test case 

using the standalone version of the TEO module is presented. Along with the report, 

the user and system manuals of the TEO module are also documented as publicly 

available online sources. The code, test case, metadata and everything that is needed 

to run TEO is on GitHub here and an extensive (and continuously updated) description 

of TEO (including most of the material of this report) is publicly available as 

ReadTheDocs documentation here. 

 

 

1.1 EMB3RS project 
EMB3Rs ("User-driven Energy-Matching & Business Prospection Tool for Industrial 

Excess Heat/Cold Reduction, Recovery and Redistribution") is a European project 

funded under the H2020 programme (Grant Agreement No.847121) to develop an 

open-source tool to match potential sources of excess thermal energy with compatible 

users of heat and cold. For more information about the EMB3RS project, please visit 

the EMB3RS website. 

Users, such as industries and other sources that produce excess heat, specify the 

essential parameters, such as their location and the available excess thermal energy. 

The EMB3Rs platform will then autonomously and intuitively assess the feasibility of 

https://github.com/Emb3rs-Project/p-teo
https://emb3rs-teo-module.readthedocs.io/en/latest/
https://www.emb3rs.eu/
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new business scenarios and identify the technical solutions to match these sources 

with compatible sinks. End-users such as building managers, energy communities or 

individual consumers will be able to determine the costs and benefits of industrial 

excess heat and cold utilisation routes and define the requirements for implementing 

the most promising solutions. The EMB3Rs platform will integrate several analysis 

modules that will allow a comprehensive study of the feasible technical pathways to 

recover and use the available excess thermal energy.  

Several other modules are part of the EMB3RS platform. Each module will be used to 

perform a specific task or analysis of excess heat and cold recovery. The models and 

their primary functionalities are listed below. 

  Core functionalities (CF) module 
 The purpose of the CF module is to provide a comprehensive quantification of the 

energy flows of the EMB3RS platform objects (sinks, sources, and links) and costs 

associated with different options for excess H/C recovery and use. The other analysis 

modules (GIS, TEO, MM and BM) to perform simulations according to user 

specifications use this information. As implemented in M29, the CF module has two 

main functionalities:  

1. Full characterization of objects – e.g., in terms of processes, equipment, build-

ing characteristics 

2. To carry out a preliminary analysis of available supply and demand - described 

as a simulation feature within the CF. 

 GIS module 
The purpose of the GIS model within EMB3Rs is to analyse possible network solutions 

for a given set of sources and sinks as well as an assumption of related network 

heat/cold losses and costs. The GIS thereby finds such a network solution along with 

the existing Open Street Map (OSM) Road Network connecting all sources and sinks. 

It currently outputs a graph/map that lets the user check the specifications of every 

single pipe element from the network found and a table that illustrates all source/sink 

specific losses, costs, network length and installed pipe capacity.  

 

  TEO Module 
The TEO module identifies the least-cost combinations of technologies for using and 

conveying excess heating or cooling (HC) from defined sources to defined sinks. The 

user (representing the excess heat producer - i.e., source – or a demand point – i.e., 

sink) wants to evaluate the least-cost options of utilising excess HC generated to meet 

the heating/cooling demand for one or more known/assumed sinks. The objective of 

the optimisation is to find the least-cost mix of technologies (in terms of installed 

capacities – typically, in power units) and match between sources and sinks (in terms 

of energy flows) that satisfy the demands under constraints dictated by regulation, 
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availability of heat, load profiles, techno-economic characteristics of technologies, 

investment plans. 

  Market Module 
The Market Module (MM) will provide the user with economic and fairness indicators 

like energy transaction, market price, social welfare, and fairness among prices. This 

will be done by short-term and long-term market analyses that simulate various market 

structures and incorporate business conditions and network models. The MM will 

consider the existing Pool market as well as new forms of a decentralized market 

based on peer-to-peer and community systems. The modelling of heat/cold sources 

and sinks will include flexibility, offering price and business preferences. 

  Business Module  
Business Model Module evaluates various business models for DHC which incorporate 

excess heat. This is done by calculating matrices like Net Present Value (NPV), 

Levelized Cost of Heat (LCOH) and Internal Rate of Return (IRR) under different 

ownership structures and market frameworks.  

 

1.2 Module development timeline 
The techno-economic optimization module has been developed in various stages 

during the course of the EMB3RS project. Firstly, the prototype version of the module 

was developed. This version was tested using a very simple test case. The prototype 

was further enhanced with several added functionalities to the final standalone version 

of the module. The main activities and the timeline of module development (until M30) 

are shown in Figure 1. After this, the bulk of the work developed focused on supporting 

the integration on the platform. 

 

 
Figure 1: Module development timeline (Author: Shravan Kumar, licensed under CC-BY 4.0) 

The initial steps in the module development involved the review of the existing tool 

‘OSeMOSYS – PULP’ to determine its capabilities to model a case of excess heat 

Activities

Phase 1 - Developement of prototype

Determining all changes needed for OSeMOSYS PULP to fit the requirements of the TEO

Updated storage equations in the module

Testing of solver

Perfromance improvement

Complex case study definition and data collection for module prototype

module run and results validation

GIS data exchange and iterations

Data exchange with CF module and iterations

module prototype  - Milestone

Phase 2 - Development of standalone version of module and prepare of integration

Updating all functionalities of the module

Complex case study definition and data collection for module prototype

module run and results validation

GIS data exchange and iterations

Data exchange with CF module and iterations

Final version of the Standalone module - Milestone

Splitting the code into function to prepare for integration

Phase 3 - Integration

Initial functions for obtaining inputs from platform and other modules

Mapping inputs and ouputs from other modules

Creating functions to produce outputs in specialized formats for other modules

Creating final funcstion to recieve inputs from other modules

Adding equations to create new outputs for other modules
Final version of module integrated with platform and other modules - Milestone

3214

Month

16 18 20 22 24 26 28 30

https://creativecommons.org/licenses/by/4.0/legalcode
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recovery and meet the requirements of the TEO in the EMB3RS platform. Further, 

some additions were made to the tool in terms of updated storage equations represent 

the operation of thermal storage, adding equations to include losses from the heating 

network in the energy balance, improving the performance of the code by reducing the 

size of the solution matrix and testing the module with different solvers. These additions 

led to the prototype version of the module. 

 

The prototype was first tested with a simple use case and the results were validated. 

In the second phase, all pre-existing functionalities of the model were updated to fit the 

requirements of the TEO module and validated. A complex real-life use case was used 

to test and validate the module code. Furthermore, this phase also included some 

iterations with the GIS and the CF modules. The methodology for the iteration and the 

data exchange was initially discussed in this phase. The TEO-GIS iteration was tested 

first using a simple test case and validated. Later, the complex test case was also 

simulated using the TEO and the GIS and the results were further validated. The final 

version of the standalone code was thus developed. The code was further split into 

several functions to make it more modular for the integration. The function for building 

and running the model was separated from the function for obtaining inputs and writing 

out the outputs. This version of the code can be accessed on GitHub here. 

 

Finally, in the third phase, the module and the functions were further developed and 

changed to facilitate the integration process. The standalone version of the module 

obtained inputs from an excel file. This had to be changed for integration. An initial 

function was developed to create a part of the inputs. The module was first tested with 

some inputs and default values for others. The function is further developed to obtain 

inputs from the platform, the CF module and the GIS module. Simultaneously, the data 

exchange between the TEO and the other modules was discussed and finalized. To 

facilitate the data exchange, additional equations were added to outputs for the 

business and the market modules. Furthermore, the inputs from the TEO to the GIS 

module have a specialized format that needs significant post-processing of the TEO 

results. A function was created for this purpose. Lastly, the TEO module was fully 

integrated with the platform and the other modules when all functions were tested.  

 

 

 

 

  

https://github.com/Emb3rs-Project/p-teo
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2  System Manual 

2.1  Purpose and scope 
The Techno-Economic Optimization (TEO) module identifies the least-cost 

combinations of technologies for using and conveying excess Heat and Cold (HC) from 

defined sources to defined sinks. The user (representing the excess heat producer - 

i.e., source – or a demand point – i.e., sink) wants to evaluate the options of utilizing 

excess HC generated to meet the heating/cooling demand for one or more 

known/assumed sinks. The objective of the optimisation is to find the least-cost mix of 

technologies and match between sources and sinks that satisfies the demands under 

constraints dictated by regulation, availability of heat, load profiles, techno-economic 

characteristics of technologies, investment plans, etc. The mix of technologies may 

include the District Heating/Cooling Network (DH/CN), technologies to upgrade the 

Temperature level on the sink or the source side, thermal storage on the sink or the 

source side, as well as heating alternatives.  

The main desired features of the tool for building the techno-economic optimisation 

module within the EMB3RS framework are: 

• High temporal resolution – Daily to hourly 

• Low simulation time 

• High flexibility and ability to be modified 

• Interaction and interoperation with other modules 

• Open access 

The techno-economic optimisation module should provide the following results: 

• The technology mix (existing and newly installed yearly capacities in terms of 

energy flows throughout the supply-demand chain) 

• Share of each technology in meeting the demand in any time step of the analysis 

(where the time resolution is defined by the user within certain limits) and 

throughout the analysis period  

• Annual costs (investment, fuel, operation & maintenance, Levelized costs of 

heat (LCOH) etc.) associated with the technologies  

• Emissions, emission savings and emission costs over the defined period. 

2.2  Main Features of the TEO Module  
• The TEO module optimizes the matching between the different sources and the 

sinks while taking into accounts various technical and economic constraints, 
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such as demand profiles, technology cost, efficiencies and losses while also 

considering thermal energy storage. 

• An optimal mix of investments in technologies and optimal capacities in storage 

and district heating network can be determined. The operation of the technolo-

gies and the intra-annual heat supply are also optimized in the module.  

• The module can also analyse the competition between centralized and decen-

tralized solutions. The current input data includes competition between waste 

heat sources and decentralized solar thermal based heating solutions. 

• The TEO module optimizes the matching between the different sources and the 

sinks while accounting for various technical and economic constraints, such as 

demand profiles, technology cost, efficiencies and losses while also considering 

thermal energy storage. 

• The TEO module carries out a socio-economic type of optimisation, where the 

total system cost is minimised, irrespective of who bears it. It does not take a 

policy-maker, investor, or business perspective. 

• The time domain, time resolution and technological options are flexible and cho-

sen by the user. For example, an analysis can be carried out for a time domain 

of 5, 10 or 30 years. Similarly, the time resolution can be of few time steps in a 

year, up to 8760 hourly time steps. The types of technologies that can be mod-

elled include heat exchangers, heat pumps, boilers etc. The module is a model 

generator, where none of the above is pre-defined. 

• The module relies on two core types of objects: Technologies and Fuels. These 

are very flexibly defined so that many different processes and commodities can 

be represented in a model. A Technology is nothing but a process - I.e. a box – 

with inputs, outputs, a transfer function between them, and several associated 

techno-economic characteristics. A Fuel is any commodity entering or exiting a 

Technology. Therefore, with a Technology, the user may represent a heat ex-

changer or a heat pump and for Fuel, the user may represent electricity or the 

excess heat stream.  

2.3  General module architecture 
The TEO module is developed in Python. The module is organised into several 

functions as shown in Figure 2. The TEO module receives inputs from the CF module, 

the GIS module and the user. These inputs are then prepared in the format needed by 

the TEO module using the ‘prepare_inputs’ function. The inputs are then segregated 

into ‘sets’, ‘parameters’ and ‘defaults’ by separate functions. The segregation of the 

input data is essential for the data to suit the structure of the TEO module, which is 

described in section 3.2. Further, the ‘buildmodel’ function is used to build the linear 

program based optimisation model and solve it to determine the least cost matching of 
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sinks and sources. The function has several sub-functions that assist in data 

preparation and solving the model. Finally, the ‘CreateResults’ function is used to 

prepare the results in the required format for the user and the other modules. All the 

functions can be found on the GitHub repository ‘EMB3RS-TEO-Module’ here. 

 

 

 
Figure 2: TEO Architecture (Author: Shravan Kumar, licensed under CC-BY 4.0) 

2.4  Module requirements 
The TEO module is developed using Python 3.9.0 and based on the PULP optimization 

package. The packages are needed to run the TEO module are listed below 

• numpy>=1.16.4 

• pandas>=0.25.1 

• PuLP>=1.6.8 

• python>=3.7.7 

The major dependencies and the requirements are described in the ‘Requirements.txt’ 

file on GitHub here. 

https://github.com/Emb3rs-Project/p-teo
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/Emb3rs-Project/p-teo/blob/master/Requirements.txt
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2.5  Detailed Module description 

 Structure of the TEO module 
The code of the TEO module is based on the long-term energy-planning tool 

OSeMOSYS (Apache License 2.0) [1]. The TEO is built using the python version of 

OSeMOSYS written in the PULP package of python, which can be accessed at here. 

The standalone version of the TEO module can be accessed from here. 

The code for the TEO is written in PULP, python [2]. The user needs to install python 

and then the python package PULP to run the TEO. The code is organised in three 

python files, ‘TEO_Model’, ‘TEO_functions’ and ‘TEO_running_file’. The ‘TEO_Model’ 

file contains the code of the TEO module and all the equations of the optimization 

model. ‘TEO_functions’ contains certain pre and post-processing functions that are 

needed to run the module. ‘TEO_running_file’ is the executable file of the TEO. The 

user can specify the input file and desired format of outputs in the ‘TEO_running_file’. 

The TEO module has been formulated as a linear (mixed-integer) optimisation 

problem. The objective function is the minimisation of the net present costs of the 

energy system under analysis, over the time domain of the case. The costs include 

operational and capital costs. The optimisation is deterministic and assumes perfect 

foresight and perfect competition. In the TEO module, the user defines the list of 

existing and potential future technologies as well as the energy vectors flowing 

between them. Based on the level of temperature, for example, Heat Exchanger (HE), 

Heat Pump (HP), Waste Heat Recovery (WHR) Boiler and thermal energy storage. 

The model will then choose the least-cost mix of technologies needed to match the 

source and sink based on defined constraints of capacity, costs etc.    

The model is structured into SETS, PARAMETERS and VARIABLES. The model 

contains equations written based on a linear/mixed-integer linear program. The SETS, 

PARAMETERS and VARIABLES are described below. The optimisation is dynamic, 

over several years. Each year is divided into several time steps. Both the years and 

the time steps can be defined by the user. The time-domain can span over decades 

and the time resolution can be up to hourly. For a large model i.e. a model with several 

sources and sinks and amounting to more than 50 technologies, optimization at an 

hourly resolution might take several hours to a day and might need a large memory 

space for example, up to 128 or 156 GB of RAM. 

2.5.1.1 SETS 

The ‘sets’ define the physical structure of a model, usually independent of the specific 

scenarios which will be run. They define the time domain and time split, the spatial 

coverage, the technologies and energy vectors to be considered, etc. For instance, 

when a variable is defined as a function of the set ‘YEAR’ it will be indicated 

as variablename[y] at it will be computed for every year listed in the set. The sets of 

the TEO are presented in Table 1 [3]. 

 

https://github.com/OSeMOSYS/OSeMOSYS_PuLP’
https://github.com/ShravanKumar23/EMB3RS-TEO-Module
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Table 1: SETS (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Name Description Index 
Obtained 

from 

YEAR 

It represents the time frame of the model, it 

contains all the years to be considered in the 

study. 

y 
User 

 

TECHNOLOGY 

It includes any element of the energy system 

that changes a commodity from one form to 

another, uses it or supplies it. All system 

components are set up as a ‘technology’ in 

OSeMOSYS. As the model is an abstraction, 

the modeller is free to interpret the role of 

technology at will, where relevant. It may for 

example represent a single real technology 

(such as a power plant) or can represent a 

heavily aggregated collection of technologies 

(such as the stock of several million light 

bulbs), or may even simply be a ‘dummy 

technology’, perhaps used for accounting 

purposes. 

t 
CF 

module 

TIMESLICE 

It represents the time split of each modelled 

year, therefore the time resolution of the 

model. Common to several energy systems 

modelling tools (incl. MESSAGE / MARKAL / 

TIMES), the annual demand is ‘sliced’ into 

representative fractions of the year. It is 

necessary to assess times of the year when 

demand is high separately from times when 

demand is low, for fuels that are expensive 

to store. To reduce the computation time, 

these ‘slices’ are often grouped. Thus, the 

annual demand may be split into aggregate 

seasons where demand levels are similar 

(such as ‘summer, winter and intermediate’). 

Those seasons may be subdivided into 

aggregate ‘day types’ (such as workdays and 

weekends), and the day further subdivided 

(such as into day and night) depending on 

the level of demand. 

l User 

FUEL 

It includes any energy sector, energy service 

or proxies entering or exiting technologies. 

These can be aggregate groups, individual 

f 
CF 

module 

https://creativecommons.org/licenses/by/4.0/legalcode
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flows or artificially separated, depending on 

the requirements of the analysis. 

EMISSION 

It includes any kind of emission potentially 

deriving from the operation of the defined 

technologies. Typical examples would 

include atmospheric emissions of 

greenhouse gasses, such as CO2. 

e 
CF 

Module 

MODE_OF_OPERATION 

It defines the number of modes of operation 

that the technologies can have. If technology 

can have various input or output fuels and it 

can choose the mix (i.e. any linear 

combination) of these input or output fuels, 

each mix can be accounted as a separate 

mode of operation. For example, a CHP 

plant may produce heat in one mode of 

operation and electricity in another. 

m User 

REGION 

It sets the regions to be modelled, e.g. 

different countries. For each of them, the 

supply-demand balances for all the energy 

vectors are ensured, including trades with 

other regions. On some occasions, it might 

be computationally more convenient to 

model different countries within the same 

region and differentiate them simply by 

creating ad hoc fuels and technologies for 

each of them. 

r User 

STORAGE 
It includes storage facilities in the 

optimization model 
s User 

 

2.5.1.2 PARAMETERS 

The parameters are the user-defined numerical inputs to the model. While usually the 

structure of a model, therefore the sets, remains fixed across scenarios, it is common 

practice to change the values of some parameters when running different scenarios 

and/or sensitivity analyses. As will be clear in the following, each parameter is a 

function of the elements in one or more sets. For instance, CapitalCost[r, t, and 

y] indicates that the capital cost is a function of the region (r), the technology (t) and 

the year (y). A list and a brief description of the parameters declared in the master 

version of OSeMOSYS are given in Table 2[3]. 
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Table 2: Parameters (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Name Description Obtained from Units Data 

type 

YearSplit[l,y] Duration of a 

modelled time slice 

expressed as a 

fraction of the year. 

The sum of each 

entry over one 

modelled year 

should equal 1. 

Calculated 

within the 

module based 

on the number of 

TimeSlices) 

N/A Float 

DiscountRateTech[r,t] A discount rate is the 

rate of return used to 

discount future cash 

flows back to their 

present value. 

Technology specific 

value for the 

discount rate, 

expressed in 

decimals (e.g. 0.05)  

Knowledge 

Base 

N/A Float 

DiscountRateSto[r,t] A discount rate is the 

rate of return used to 

discount future cash 

flows back to their 

present value. 

Storage specific 

value for the 

discount rate, 

expressed in 

decimals (e.g. 0.05)  

Knowledge 

Base 

N/A Float 

https://creativecommons.org/licenses/by/4.0/legalcode
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DepreciationMethod[r] Binary parameter 

defining the type of 

depreciation to be 

applied. It has value 

1 for sinking fund 

depreciation, and 

value 2 for straight-

line depreciation. 

Knowledge 

Base 

N/A Float 

SpecifiedAnnualDeman

d[r,f,y] 

Total specified 

demand for the year, 

linked to a specific 

‘time of use’ during 

the year. 

CF module kWh Float 
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SpecifiedDemandProfile

[r,f,l,y] 

Annual fraction of 

energy service or 

commodity demand 

that is required in 

each time slice. For 

each year, all the 

defined 

SpecifiedDemandPr

ofile input values 

should sum up to 1. 

CF module N/A Array 

of float 

CapacityToActivityUnit[r,

t] 

Conversion factor 

relating the energy 

that would be 

produced when one 

unit of capacity is 

fully used in one 

year. 

User N/A Float 
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CapacityFactor[r,t,l,y] Capacity available 

per each TimeSlice 

is expressed as a 

fraction of the total 

installed capacity, 

with values ranging 

from 0 to 1. It gives 

the possibility to 

account for forced 

outages. 

CF module N/A Array 

of float 
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AvailabilityFactor[r,t,y] The maximum time 

technology can run 

in the whole year, as 

a fraction of the year 

ranging from 0 to 1. 

It gives the 

possibility to account 

for planned outages. 

User N/A Float 

OperationalLife[r,t] The useful lifetime of 

technology is 

expressed in years. 

Knowledge 

Base 

Years Float 

ResidualCapacity[r,t,y] Remained capacity 

available from 

before the modelling 

period. 

User kW Float 
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InputActivityRatio[r,t,f,m,

y] 

Rate of use of a 

commodity by 

technology, as a 

ratio of the rate of 

activity. 

CF module N/A Float 

OutputActivityRatio[r,t,f,

m,y] 

Rate of commodity 

output from 

technology, as a 

ratio of the rate of 

activity. 

CF module N/A Float 

OuputModeofOpeartion[

r,t,m,y] 

Binary parameter 

indicating the mode 

of operation in which 

technology has an 

output activity ratio 

Knowledge 

Base 

N/A Float 

CapitalCost[r,t,y] Capital investment 

cost of technology, 

per unit of capacity. 

CF module €/kW Float 
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VariableCost[r,t,m,y] Cost of technology 

for a given mode of 

operation (Variable 

O&M cost), per unit 

of activity. 

CF module €/kW

h 

Float 

FixedCost[r,t,y] Fixed O&M cost of 

technology, per unit 

of capacity. 

CF module €/kW Float 

TechnologyToStorage[r,

t,s,m] 

Binary parameter 

linking technology to 

the storage facility it 

charges. It has a 

value of 1 if the 

technology and the 

storage facility are 

linked, 0 otherwise. 

User N/A Float 
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TechnologyFromStorag

e[r,t,s,m] 

Binary parameter 

linking a storage 

facility to the 

technology it feeds. 

It has a value of 1 if 

the technology and 

the storage facility 

are linked, 0 

otherwise. 

User N/A Float 

StorageLevelStart[r,s] Level of storage at 

the beginning of the 

first modelled year, 

in units of activity. 

User kWh Float 

StorageMaxChargeRate

[r,s] 

Maximum charging 

rate for the storage, 

in units of activity per 

year. 

User kWh Float 
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StorageMaxDischargeR

ate[r,s] 

The maximum 

discharging rate for 

the storage in units 

of activity per year. 

User /KB? kWh Float 

MinStorageCharge[r,s,y] It sets a lower bound 

to the amount of 

energy stored, as a 

fraction of the 

maximum, with a 

number ranging 

between 0 and 1. 

The storage facility 

cannot be emptied 

below this level. 

User /KB? N/A Float 

OperationalLifeStorage[

r,s] 

Useful lifetime of the 

storage facility. 

User /KB? Years Float 
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CapitalCostStorage[r,s,y

] 

Investment costs of 

storage additions, 

defined per unit of 

storage capacity. 

User/KB? €/kW Float 

ResidualStorageCapacit

y[r,s,y] 

Exogenously 

defined storage 

capacities. 

User kW Float 

StorageUvalue[r,s] Heat transfer 

coefficient of the 

thermal energy 

storage tank.  

User /KB? kJ/kg 

K 

Float 

StorageFlowTemperatur

e[r,s] 

The temperature of 

water inflow into 

thermal energy 

storage 

User   °C Float 
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StorageReturnTemperat

ure[r,s] 

The return water 

temperature in the 

heating grid where 

the thermal energy 

storage is connected 

User °C Float 

StorageAmbientTemper

ature[r,s] 

The ambient 

temperature of the 

locations where the 

thermal energy 

storage is located.  

User °C Float 
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StorageL2D[r,s] The binary 

parameter indicates 

the length to 

diameter ratio of the 

thermal energy 

storage tank. Value 

is 0 if the L2D is 2 

and is 1 if the L2D is 

4.  

User /KB? N/A Float 

Storagetagheating[r,s] Binary parameter 

indicating whether 

the thermal energy 

storage is connected 

to the district heating 

network. 1 if it is 

connected and 0 is if 

is not. 

User N/A Float 
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TotalAnnualMaxCapacit

y[r,t,y] 

Total maximum 

existing (residual 

plus cumulatively 

installed) capacity 

allowed for 

technology in a 

specified year. 

CF module kW Float 

TotalAnnualMinCapacity

[r,t,y] 

Total minimum 

existing (residual 

plus cumulatively 

installed) capacity 

allowed for 

technology in a 

specified year. 

User kW Float 

TotalAnnualMaxCapacit

yInvestment[r,t,y] 

The maximum 

capacity of 

technology; 

expressed in power 

units. 

User kW Float 
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TotalAnnualMinCapacity

Investment[r,t,y] 

The minimum 

capacity of 

technology; 

expressed in power 

units. 

User kW Float 

TotalTechnologyAnnual

ActivityUpperLimit[r,t,y] 

The total maximum 

level of activity 

allowed for 

technology in one 

year. 

User kWh Float 

TotalTechnologyAnnual

ActivityLowerLimit[r,t,y] 

The total minimum 

level of activity 

allowed for 

technology in one 

year. 

User kWh Float 
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TotalTechnologyModelP

eriodActivityUpperLimit[r

,t] 

The total maximum 

level of activity 

allowed for 

technology in the 

entire modelled 

period. 

User kWh Float 

TotalTechnologyModelP

eriodActivityLowerLimit[r

,t] 

The total minimum 

level of activity 

allowed for 

technology in the 

entire modelled 

period. 

User kWh Float 

EmissionActivityRatio[r,t

,e,m,y] 

The emission factor 

of a technology per 

unit of activity, per 

mode of operation. 

CF module Kg / 

kWh 

Float 

EmissionsPenalty[r,e,y] Penalty per unit of 

emission. 

Knowledge 

Base 

€/Kg Float 
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AnnualEmissionLimit[r,e

,y] 

The annual upper 

limit for a specific 

emission generated 

in the whole 

modelled region. 

User Kg Float 

 

2.5.1.3 VARIABLES 

The variables are the outputs computed by the code. As much as the parameters, also 

the variables are functions of the elements in one or more sets. In Table 3, a list and a 

brief description of all the variables computed by the code of OSeMOSYS (in its full 

version) are given. As will be explained next in this manual, a shortened version of 

OSeMOSYS has been created, to improve the computational capability at the expense 

of the readability of the code. In such a version, only some of the variables here listed 

are computed. When reasonable, the domain of several variables has been 

constrained to be positive, to decrease the size of the solution space and therefore the 

computational effort. The list of variables is shown in Table 3 [3]. 
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Table 3: Variables (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Name Description Units Datatype 

RateOfDemand[r,l,f,y]>=0 Intermediate variable. It 

represents the energy that 

would be demanded in a 

one-time slice l if the latter 

lasted the whole year. It is a 

function of the parameters 

SpecifiedAnnualDemand 

and 

SpecifiedDemandProfile. | 

Energy (per year) 

kWh/y

ear 

Dictionary 

Demand[r,l,f,y]>=0 Demand for one fuel in one 

time slice. 

kWh Dictionary 

RateOfStorageCharge[r,s,ls,ld,l

h,y] 

Intermediate variable. It 

represents the commodity 

that would be charged to the 

storage facility s in a one-

time slice if the latter lasted 

the whole year. It is a 

function of the 

RateOfActivity and the 

parameter 

TechnologyToStorage. | 

Energy (per year) 

kWh/y

ear 

Dictionary 

RateOfStorageDischarge[r,s,ls,l

d,lh,y] 

Intermediate variable. It 

represents the commodity 

that would be discharged 

from storage facilities in one 

timeslice if the latter lasted 

the whole year. It is a 

function of the 

RateOfActivity and the 

parameter 

TechnologyFromStorage. 

kWh/y

ear 

Dictionary 

NetChargeWithinYear[r,s,ls,ld,lh

,y] 

Net quantity of commodity 

charged to storage facility s 

in year y. It is a function of 

kWh/y

ear 

Dictionary 

https://creativecommons.org/licenses/by/4.0/legalcode
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the RateOfStorageCharge 

and the 

RateOfStorageDischarge 

and it can be negative. 

NetChargeWithinDay[r,s,ls,ld,lh,

y] 

Net quantity of commodity 

charged to storage facility s 

in daytype ld. It is a function 

of the RateOfStorageCharge 

and the 

RateOfStorageDischarge 

and can be negative. 

kWh Dictionary 

StorageLevelYearStart[r,s,y]>=0 Level of stored commodity in 

storage facility s in the first 

time step of year y. 

kWh Dictionary 

StorageLevelYearFinish[r,s,y]>=

0 

Level of stored commodity in 

storage facility s in the last 

time step of year y. 

kWh Dictionary 

StorageLevelSeasonStart[r,s,ls,

y]>=0 

Level of stored commodity in 

storage facility s in the first 

time step of season ls. 

kWh Dictionary 

StorageLevelDayTypeStart[r,s,ls

,ld,y]>=0 

Level of stored commodity in 

storage facility s in the first 

time step of daytype ld. 

kWh Dictionary 

StorageLevelDayTypeFinish[r,s,

ls,ld,y]>=0 

Level of stored commodity in 

storage facility s in the last 

time step of daytype ld. 

kWh Dictionary 

StorageLowerLimit[r,s,y]>=0 Minimum allowed level of 

stored commodity in storage 

facility s, as a function of the 

storage capacity and the 

user-defined 

MinStorageCharge ratio. 

kWh Dictionary 

StorageUpperLimit[r,s,y]>=0 Maximum allowed level of 

stored commodity in storage 

facility s. It corresponds to 

the total existing capacity of 

storage facility s (summing 

kWh Dictionary 
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newly installed and pre-

existing capacities). 

AccumulatedNewStorageCapaci

ty[r,s,y]>=0 

The cumulative capacity of 

newly installed storage from 

the beginning of the time 

domain to year y. 

kWh Dictionary 

NewStorageCapacity[r,s,y]>=0 Capacity of newly installed 

storage in year y. 

kWh Dictionary 

StorageLevelTimesliceStart[r,s,l,

y] 

Energy stored in storage in 

timeslice l. 

kWh Dictionary 

StorageLosses[r,s,l,y] Thermal energy losses from 

the storage in timeslice l. 

kWh Dictionary 

CapitalInvestmentStorage[r,s,y]

>=0 

Undiscounted investment in 

new capacity for storage 

facility s. Derived from the 

NewStorageCapacity and 

the parameter 

CapitalCostStorage. 

€ Dictionary 

DiscountedCapitalInvestmentSt

orage[r,s,y]>=0 

Investment in new capacity 

for storage facility ‘s’ 

discounted through the 

parameter DiscountRate. 

€ Dictionary 

SalvageValueStorage[r,s,y]>=0 Salvage value of storage 

facility s in year y, as a 

function of the parameters 

OperationalLifeStorage and 

DepreciationMethod. 

€ Dictionary 

DiscountedSalvageValueStorag

e[r,s,y]>=0 

Salvage value of storage 

facility ‘s’, discounted 

through the parameter 

DiscountRate. 

€ Dictionary 

TotalDiscountedStorageCost[r,s

,y]>=0 

Difference between the 

discounted capital 

investment in new storage 

€ Dictionary 
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facilities and the salvage 

value in year y. 

NumberOfNewTechnologyUnits[

r,t,y]>=0, integer 

Number of newly installed 

units of technology t in year 

y, as a function of the 

parameter 

CapacityOfOneTechnology

Unit. | No unit 

 

N/A 

Dictionary 

NewCapacity[r,t,y]>=0 Newly installed capacity of 

technology t in year y. 

kW Dictionary 

AccumulatedNewCapacity[r,t,y]

>=0 

Cumulative newly installed 

capacity of technology t from 

the beginning of the time 

domain to year y. 

kW Dictionary 

TotalCapacityAnnual[r,t,y]>=0 Total existing capacity of 

technology t in year y (sum of 

cumulative newly installed 

and pre-existing capacity). 

kW Dictionary 

RateOfActivity[r,l,t,m,y] >=0 Intermediate variable. It 

represents the activity of 

technology t in one mode of 

operation and in time slice l, 

if the latter lasted the whole 

year. | Energy (per year) 

kWh/y

ear 

Dictionary 

RateOfTotalActivity[r,t,l,y] >=0 Sum of the RateOfActivity of 

a technology over the modes 

of operation. 

kWh/y

ear 

Dictionary 

TotalTechnologyAnnualActivity[r

,t,y] >=0 

Total annual activity of 

technology t. 

kWh Dictionary 

TotalAnnualTechnologyActivityB

yMode[r,t,m,y] >=0 

The annual activity of 

technology t in mode of 

operation m. 

kWh Dictionary 
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TotalTechnologyModelPeriodAc

tivity[r,t] 

Sum of the 

TotalTechnologyAnnualActiv

ity over the years of the 

modelled period. 

kWh Dictionary 

RateOfProductionByTechnology

ByMode[r,l,t,m,f,y] >=0 

Intermediate variable. It 

represents the quantity of 

fuel f that technology t would 

produce in one mode of 

operation and in time slice l, 

if the latter lasted the whole 

year. It is a function of the 

variable RateOfActivity and 

the parameter 

OutputActivityRatio. 

kWh/y

ear 

Dictionary 

RateOfProductionByTechnology

[r,l,t,f,y] >=0 

Sum of the 

RateOfProductionByTechnol

ogyByMode over the modes 

of operation. 

kWh/y

ear 

Dictionary 

ProductionByTechnology[r,l,t,f,y] 

>=0 

Production of fuel f by 

technology t in time slice l. 

kWh Dictionary 

ProductionByTechnologyAnnual

[r,t,f,y] >=0 

Annual production of fuel f by 

technology t. 

kWh Dictionary 

RateOfProduction[r,l,f,y] >=0 Sum of the 

RateOfProductionByTechnol

ogy over all the technologies. 

kWh/y

ear 

Dictionary 

Production[r,l,f,y] >=0 Total production of fuel f in 

time slice l. It is the sum of 

the 

ProductionByTechnology 

over all technologies. 

kWh Dictionary 

RateOfUseByTechnologyByMod

e[r,l,t,m,f,y] >=0 

Intermediate variable. It 

represents the quantity of 

fuel f that technology t would 

use in one mode of operation 

and in time slice l, if the latter 

lasted the whole year. It is 

the function of the variable 

RateOfActivity and the 

kWh/y

ear 

Dictionary 
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parameter 

InputActivityRatio. 

RateOfUseByTechnology[r,l,t,f,y

] >=0 

Sum of the 

RateOfUseByTechnologyBy

Mode over the modes of 

operation. 

kWh/y

ear 

Dictionary 

UseByTechnologyAnnual[r,t,f,y] 

>=0 

Annual use of fuel f by 

technology t. 

kWh Dictionary 

UseByTechnology[r,l,t,f,y] >=0 Use of fuel f by technology t 

in time slice l. 

kWh Dictionary 

Use[r,l,f,y] >=0 Total use of fuel f in time 

slice l. It is the sum of the 

UseByTechnology over all 

technologies. 

kWh Dictionary 

Trade[r,rr,l,f,y] Quantity of fuel f traded 

between region r and rr in 

time slice l. 

kWh Dictionary 

TradeAnnual[r,rr,f,y] Annual quantity of fuel f 

traded between region r and 

rr. It is the sum of the 

variable Trade over all the 

time slices. 

kWh Dictionary 

ProductionAnnual[r,f,y] >=0 Total annual production of 

fuel f. It is the sum of the 

variable Production over all 

technologies. 

kWh Dictionary 

UseAnnual[r,f,y] >=0 Total annual use of fuel f. It 

is the sum of the variable 

Use over all technologies. 

kWh Dictionary 

CapitalInvestment[r,t,y] >=0 Undiscounted investment in 

new capacity of technology t. 

It is a function of the 

NewCapacity and the 

parameter CapitalCost. | 

Monetary units 

€ Dictionary 



This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N°847121 

The EMB3RS Techno-Economic Optimization Module   

 

39 

DiscountedCapitalInvestment[r,t

,y] >=0 

Investment in new capacity 

of technology t, discounted 

through the parameter 

DiscountRate. 

€ Dictionary 

SalvageValue[r,t,y] >=0 Salvage value of technology 

t in year y, as a function of 

the parameters 

OperationalLife and 

DepreciationMethod. 

€ Dictionary 

DiscountedSalvageValue[r,t,y] 

>=0 

Salvage value of technology 

t, discounted through the 

parameter DiscountRate. 

€ Dictionary 

OperatingCost[r,t,y] >=0 Undiscounted sum of the 

annual variable and fixed 

operating costs of 

technology t. 

€ Dictionary 

DiscountedOperatingCost[r,t,y] 

>=0 

Annual OperatingCost of 

technology t, discounted 

through the parameter 

DiscountRate. 

€ Dictionary 

AnnualVariableOperatingCost[r,t

,y] >=0 

Annual variable operating 

cost of technology t. Derived 

from the 

TotalAnnualTechnologyActiv

ityByMode and the 

parameter VariableCost. 

€ Dictionary 

AnnualFixedOperatingCost[r,t,y] 

>=0 

Annual fixed operating cost 

of technology t. Derived from 

the TotalCapacityAnnual 

and the parameter 

FixedCost. 

€ Dictionary 

TotalDiscountedCostByTechnol

ogy[r,t,y] >=0 

Difference between the 

sums of discounted 

operating cost/capital 

cost/emission penalties and 

the salvage value. 

€ Dictionary 

TotalDiscountedCost[r,y] >=0 Sum of the 

TotalDiscountedCostByTech

€ Dictionary 
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nology over all the 

technologies. 

ModelPeriodCostByRegion[r] 

>=0 

Sum of the 

TotalDiscountedCost overall 

modelled years. 

€ Dictionary 

TotalCapacityInReserveMargin[r

,y] >=0 

Total available capacity of 

the technologies required to 

provide reserve margin. It is 

derived from the 

TotalCapacityAnnual and 

the parameter 

ReserveMarginTagTechnolo

gy. | Energy 

kW Dictionary 

DemandNeedingReserveMargin

[r,l,y] >=0 

Quantity of fuel produced 

that is assigned to a target of 

reserve margin. Derived 

from the RateOfProduction 

and the parameter 

ReserveMarginTagFuel. 

kWh Dictionary 

TotalREProductionAnnual[r,y] Annual production by all 

technologies tagged as 

renewable in the model. 

Derived from the 

ProductionByTechnologyAn

nual and the parameter 

RETagTechnology. 

kWh Dictionary 

RETotalProductionOfTargetFuel

Annual[r,y] 

Annual production of fuels 

tagged as renewable in the 

model. Derived from the 

RateOfProduction and the 

parameter RETagFuel. 

kWh Dictionary 

AnnualTechnologyEmissionByM

ode[r,t,e,m,y] >=0 

Annual emission of agent e 

by technology t in mode of 

operation m. Derived from 

the RateOfActivity and the 

parameter 

EmissionActivityRatio. 

Kg Dictionary 
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AnnualTechnologyEmission[r,t,e

,y] >=0 

Sum of the 

AnnualTechnologyEmission

ByMode over the modes of 

operation. 

Kg Dictionary 

AnnualTechnologyEmissionPen

altyByEmission[r,t,e,y] >=0 

Undiscounted annual cost of 

emission e by technology t. It 

is a function of the 

AnnualTechnologyEmission 

and the parameter 

EmissionPenalty. 

€ Dictionary 

AnnualTechnologyEmissionsPe

nalty[r,t,y] >=0 

Total undiscounted annual 

cost of all emissions 

generated by technology t. 

Sum of the 

AnnualTechnologyEmission

PenaltyByEmission over all 

the emitted agents. 

€ Dictionary 

DiscountedTechnologyEmission

sPenalty[r,t,y] >=0 

Annual cost of emissions by 

technology t, discounted 

through the DiscountRate. 

€ Dictionary 

AnnualEmissions[r,e,y] >=0 Sum of the 

AnnualTechnologyEmission 

over all technologies. 

Kg Dictionary 

ModelPeriodEmissions[r,e] >=0 Total system emissions of 

agent e in the model period, 

accounting for both the 

emissions by technologies 

and the user defined 

ModelPeriodExogenousEmi

ssion. 

Kg Dictionary 

 Inputs and Outputs 
The module obtains inputs from the CF module, GIS module and the user. It provides 

outputs to be used by the market and business modules. Further, some results of the 

TEO module must also be used for the visualization. The TEO module needs several 

inputs from the CF and the user. Some of these inputs, namely, the ‘SETS’ will be used 

to structure the model while other inputs, ‘Parameters’ will be used to make the 

calculations within the model.  

The user gives inputs through the platform. To improve the user-friendliness of the 

platform, a detailed description is provided for each user input. Furthermore, it will also 
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be conveyed to the user if the input is mandatory or not. If the user does not give a 

value for a no-mandatory input, it will be obtained from the default values stored in the 

knowledge base. This is further discussed in the next section. A preliminary list of 

labels for the user inputs is shown in Table 4. 

Table 4: User inputs to TEO (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Label Description Mandatory 

Region 

It sets the regions to be modelled, e.g. 

different countries, cities, counties etc. For 

the purpose of this analysis, it is enough to 

have one region name. For each of them, the 

supply-demand balances for all the energy 

vectors are ensured. On some occasions, it 

might be computationally more convenient to 

model different countries within the same 

region and differentiate them simply by 

creating ad hoc fuels and technologies for 

each of them. 

TRUE 

Emission 

It includes any kind of emission potentially 

deriving from the operation of the defined 

technologies. Typical examples would 

include atmospheric emissions of 

greenhouse gasses, such as CO2. The user 

must fill in 'co2' as a mandatory entry. Other 

entries are also allowed 

TRUE 

Time resolution 

It represents the time steps of each modelled 

year, therefore the time resolution of the 

model.  

TRUE 

Time period 

It represents the period of the model; it 

contains all the years to be considered in the 

analysis.  

TRUE 

Mode of operation 

It defines the number of modes of operation 

that the technologies can have. If a 

technology can have various input or output 

fuels and it can choose the mix (i.e. any linear 

combination) of these input or output fuels, 

each mix can be accounted as a separate 

mode of operation.  The user must input at 

least 1 mode of operation. There must be two 

modes of operation if storage is used in the 

model 

TRUE 
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Storage It includes storage facilities in the model. FALSE 

Availability factor 

Maximum time a technology can run in the 

whole year, as a fraction of the year ranging 

from 0 to 1. It gives the possibility to account 

for planned outages. 

FALSE 

Technology discount 

rate 

Technology specific value for the discount 

rate, expressed in decimals (e.g. 0.04). 
FALSE 

Capacity to Activity 

ratio 

Conversion factor relating the energy that 

would be produced when one unit of capacity 

is fully used in one year. 

FALSE 

Residual capacity 
Remained capacity available from before the 

modelling period. 
FALSE 

Maximum annual 

capacity addition  

Maximum capacity of a technology that can 

be added in a year, expressed in power units. 
FALSE 

Minimum capacity  

Total minimum existing (residual plus 

cumulatively installed) capacity allowed for a 

technology in a year. 

FALSE 

Minimum annual 

capacity addition  

Minimum capacity of a technology that must 

be added in a year, expressed in power units. 
FALSE 

Minimum annual heat 

generation 

Total minimum heat generation allowed for a 

technology in one year. 
FALSE 

Maximum annual 

heat generation 

Total maximum heat generation allowed for a 

technology in one year. 
FALSE 

Minimum model 

period heat 

generation 

Total minimum heat generation allowed for a 

technology in the entire modelled period. 
FALSE 

Maximum model 

period heat 

generation 

Total maximum heat generation allowed for a 

technology in the entire modelled period. 
FALSE 

Storage capital cost 
Investment costs of storage additions, 

defined per unit of storage capacity. 
FALSE 

Storage discount rate 
Storage specific value for the discount rate, 

expressed in decimals  
FALSE 

Storage operational 

life 
Useful lifetime of the storage facility. FALSE 
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Storage maximum 

charge rate 
Maximum charging rate for the storage FALSE 

Storage maximum 

discharge rate 
Maximum discharging rate for the storage FALSE 

Storage length to 

diameter ratio 

Binary parameter which indicates the length 

to diameter ratio of the thermal energy 

storage tank. Value is 0 if the L2D is 2 and is 

1 if the L2D is 4. 

FALSE 

Storage heating tag 

Binary parameter indicating whether the 

thermal energy storage is connected to the 

district heating network. 1 if it is connected 

and 0 is if is not. 

FALSE 

Storage cooling tag 

  

Binary parameter indicating whether the 

thermal energy storage is connected to the 

district cooling network. 1 if it is connected 

and 0 is if is not. 

FALSE 

Storage hot water 

return temperature 

The return water temperature in the heating 

grid where the thermal energy storage is 

connected. 

FALSE 

Storage hot water 

supply temperature 

The temperature of water inflow into thermal 

energy storage. 
FALSE 

Average ambient 

temperature of the 

region 

The average ambient temperature of the 

locations where the thermal energy storage is 

located. 

FALSE 

Residual storage 

capacity 

Exogenously defined storage capacities at 

the start of the modeling period 
FALSE 

Maximum storage 

capacity 

Maximum allowed capacity of each storage in 

a year 
FALSE 

Starting level of 

storage 

Level of storage at the beginning of first 

modelled year 
FALSE 

Heat transfer co-

efficient of the 

thermal storage 

Heat transfer co-efficient of the thermal 

energy storage tank. 
FALSE 

Annual emission limit 
Annual upper limit for a specific emission 

generated in the entire modelled region. 
FALSE 
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Technology charging 

storage 

Binary parameter linking a storage facility to 

the technology it feeds. It has value 1 if the 

technology and the storage facility are linked, 

0 otherwise. 

FALSE 

Technology getting 

discharge from 

storage  

Binary parameter linking a technology to the 

storage facility it charges. It has value 1 if the 

technology and the storage facility are linked, 

0 otherwise. 

FALSE 

 

The inputs from the CF and the GIS modules along with a detailed description are 
shown in Table 5. 
Table 5 

 

Table 5: Inputs from other modules to TEO (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Input Module Description 

TECHNOLOGY CF module 

The set of all conversion 

technologies that have 

been deemed feasible by 

the CF: This will include 

the sources (heat 

generation technologies), 

heat conversion 

technologies (such as 

heat exchanger) and 

temperature boosting 

technologies such as 

heat pumps and boilers. 

This set will also contain 

the district heating 

network. 

FUEL CF module 

It includes the set of all 

fuels that will be used by 

each technology in the 

‘TECHNOLOGY’ set. 

Both input and output 

fuels of all technologies 

will be included 

output CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the 
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‘OutputActivityRatio’ of the 

technology 

turnkey CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the ‘CapitalCost’ 

of the technology 

om_fix CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the ‘FixedCost’ 

of the technology 

om_var CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the 

‘VariableCost’ of the 

technology 

emissions_factor CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the 

‘EmissionActivityRatio’ of 

the technology 

input CF module 

This is input for each 

technology in the 

‘TECHNOLOGY’ set and 

identifies the 

‘InputActivityRatio’ of the 

technology 

specified_annual_demand_cf CF module 

This includes the annual 

demand in energy units 

for each stream in every 

sink. 

specified_demand_profile_cf CF module 

This includes the hourly 

demand profile of each 

stream in every sink. 

capacity_factor_cf CF module 

This includes the hourly 

heat generation profile for 

each stream in every 

source.  

losses_in_kw GIS module 

The power losses in the 

heating network are 

determined by the GIS, 
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These losses are then 

added to the sink 

demand in each hour 

using this parameter.  

cost_in_kw GIS module 

This identifies the capital 

‘cost of the heat network 

per capacity unit’ 

determined by the GIS 

module. 

 

 Contributions and requirements for the 

knowledge base 
The TEO is linked to the knowledge base for the module to provide the default values 

that are needed to run the model. All the parameters in the TEO are necessary for the 

model to be run. However, the user might not have inputs for all the parameters for 

each technology. Thus, a default value is used if the user is unable to provide values 

for the parameters. The default values are stored in the knowledge base as shown in 

Table 6. 

 
Table 6: Default values in the knowledge base (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Parameter Value 

YearSplit 0 

Storagetagcooling 0 

Storagetagheating 0 

AccumulatedAnnualDemand 0 

AnnualEmissionLimit 999999999 

AnnualExogenousEmission 0 

AvailabilityFactor 1 

CapacityFactor 1 

CapacityOfOneTechnologyUnit 0 

CapacityToActivityUnit 8760 

CapitalCost 0 

CapitalCostStorage 0 

Conversionld 0 

Conversionlh 0 

Conversionls 0 

DaysInDayType 7 

DaySplit 0 

DepreciationMethod 1 

DiscountRateTech 0.05 

DiscountRateSto 0.05 

EmissionActivityRatio 0 
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EmissionsPenalty 0 

FixedCost 0 

InputActivityRatio 0 

MinStorageCharge 0 

ModelPeriodEmissionLimit 999999999 

ModelPeriodExogenousEmission 0 

OperationalLife 15 

OperationalLifeStorage 99 

OutputActivityRatio 0 

OutputModeofoperation 1 

REMinProductionTarget 0 

ReserveMargin 1 

ReserveMarginTagFuel 0 

ReserveMarginTagTechnology 0 

ResidualCapacity 0 

ResidualStorageCapacity 0 

RETagFuel 0 

RETagTechnology 0 

SpecifiedAnnualDemand 0 

SpecifiedDemandProfile 0 

StorageMaxCapacity 999999999 

StorageMaxChargeRate 999999999 

StorageMaxDischargeRate 999999999 

StorageLevelStart 0 

StorageUvalue 0.22 

StorageFlowTemperature 80 

StorageReturnTemperature 50 

StorageAmbientTemperature 15 

StorageL2D 0 

TechnologyFromStorage 0 

TechnologyToStorage 0 

TechWithCapacityNeededToMeetPeakTS 0 

TotalAnnualMaxCapacity 999999999 

TotalAnnualMaxCapacityInvestment 999999999 

TotalAnnualMinCapacity 0 

TotalAnnualMinCapacityInvestment 0 

TotalTechnologyAnnualActivityLowerLimit 0 

TotalTechnologyAnnualActivityUpperLimit 999999999 

TotalTechnologyModelPeriodActivityLowerLimit 0 

TotalTechnologyModelPeriodActivityUpperLimit 999999999 

TradeRoute 0 

VariableCost 0 

GIS_Losses 0 
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The default values are assigned in a manner such that they do not constrain the 

optimization model. For example, the ‘LowerLimit’ highlights the minimum allowed 

value in the model. Thus, the default value is assigned as zero. Similarly, the 

‘UpperLimits’ are assigned to be very high values such as 99999999, so that they do 

not interfere with the solution. 

 

  Functioning of the TEO module 
The TEO module is a techno-economic optimization model that determines the least-

cost investment and operation of the system. The module is built based on the long-

term energy system optimization tool OSeMOSYS. The model optimizes the capacities 

and the operation of the heat generation and conversion technologies while seeking to 

minimize the overall net present costs of the energy system over a time horizon 

relevant for investments (i.e. years or decades). The optimization algorithm is 

formulated as a linear program using the PULP package in python. The module uses 

the inputs specified in Table 1 and Table 2 to formulate a linear program based model. 

The module considers the temporal availability of excess heat and the heat demand to 

determine the optimal capacities and the operation of the heat generation and 

conversion technologies to maintain the energy balance as shown in Equation 1. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑟, 𝑓, 𝑙, 𝑦) = 𝑈𝑠𝑒(𝑟, 𝑓, 𝑙, 𝑦) + 𝐷𝑒𝑚𝑎𝑛𝑑(𝑟, 𝑓, 𝑙, 𝑦) 

Equation 1: Energy balance 

Furthermore, the module also uses constraints to ensure that the capacity adequacy 

is respected, i.e. the heat generation in each time step is less than the installed 

capacity of heat generation. Here, the Availability Factor represents the maximum time 

a technology can run in the whole year, as a fraction of the year ranging from 0 to 1. It 

gives the possibility to account for planned outages and the Capacity Factor represents 

capacity available per each TimeSlice expressed as a fraction of the total installed 

capacity, with values ranging from 0 to 1. It gives the possibility to account for forced 

outages. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑟, 𝑡, 𝑙, 𝑦) ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑟, 𝑡, 𝑙, 𝑦) ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟(𝑟, 𝑡, 𝑙, 𝑦) ∗ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟(𝑟, 𝑡, 𝑦) 

Equation 2: Capacity Adequacy 

The maximum capacity for each technology in each year ‘x’ can be constrained by 

using the parameter TotalAnnualMaxCapacity and TotalAnnualMinCapacity as shown 

in Equation 3 and Equation 4. These parameters are described in Table 2. 

 

∑ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑥)

𝑦=1 𝑡𝑜 𝑥

≤ 𝑇𝑜𝑡𝑎𝑙𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑎𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑥) 

Equation 3: Maximum allowed capacity in each year 
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∑ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑥)

𝑦=𝑠𝑡𝑎𝑟𝑡𝑦𝑒𝑎𝑟 𝑡𝑜 𝑥

≥ 𝑇𝑜𝑡𝑎𝑙𝐴𝑛𝑛𝑢𝑎𝑙𝑀𝑖𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑥) 

Equation 4: Maximum allowed capacity in each year 

The annual production from each technology is calculated as shown in Equation 5. 

𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦) =  ∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑙, 𝑡, 𝑦)

𝑙

 

Equation 5: Annual Production 

 

Furthermore, the production from each technology can be constrained in each year 

and for the model period as shown in Equation 6 to Equation 9. 

 

𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦) ≥  𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑐𝑡𝑣𝑖𝑡𝑦𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑟, 𝑡, 𝑦) 
 

Equation 6: Maximum allowed annual production 

 

𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦) ≤  𝐴𝑛𝑛𝑢𝑎𝑙𝐴𝑐𝑡𝑣𝑖𝑡𝑦𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑟, 𝑡, 𝑦) 
 

Equation 7: Minimum allowed annual production 

 

∑ 𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦)

𝑦

≤ 𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐴𝑐𝑡𝑣𝑖𝑡𝑦𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑟, 𝑡, 𝑦) 

 

Equation 8: Maximum allowed model period production 

 

∑ 𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦)

𝑦

≥  𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐴𝑐𝑡𝑣𝑖𝑡𝑦𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑟, 𝑡, 𝑦) 

 

Equation 9: Minimum allowed model period production 

The model considers storage as an intermediary between two technologies thus 

transferring energy between the two technologies and simultaneously storing energy. 

Consider two technologies T1 and T2 and a storage STO1. The storage equations in 

the TEO would be represented as shown in Equation 10. Here, ‘Production’ indicates 

the production of a fuel from the first technology ‘T1’ while ‘Use’ indicates the use of 

the fuel to the next technology ’T2’. Thus, using the storage the fuel is stored and 

dispatched from the storage when needed by the second technology.  
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑇1, 𝑙, 𝑦) ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝑇𝑜𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑟, 𝑇1, 𝑆𝑇𝑂1, 𝑦)

=  𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙 (𝑆𝑇𝑂1, 𝑙, 𝑦) −  𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙 (𝑆𝑇𝑂1, 𝑙 − 1, 𝑦)

− 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠𝑒𝑠(𝑆𝑇𝑂1, 𝑙, 𝑦)  +  𝑈𝑠𝑒(𝑟, 𝑇2, 𝑙, 𝑦)

∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐹𝑟𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑟, 𝑇2, 𝑆𝑇𝑂1, 𝑦)   

Equation 10: Storage operation 

The capacity of the storage is also accounted for and limited as shown in Equation 11 

and Equation 12. 

 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑠, 𝑦) ≥ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙 (𝑠, 𝑙, 𝑦) 
 

Equation 11: Storage Capacity 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑀𝑎𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑠, 𝑦) ≥ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑠, 𝑦) 
 

Equation 12: Maximum allowed storage capacity 

 

 
 

 

The model also accounts for the emissions, constrains the limits, and calculates the 

emission penalties as shown in Equation 13 to Equation 15. 

 
𝐴𝑛𝑛𝑢𝑎𝑙𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑟, 𝑡, 𝑒, 𝑦) ≤ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙 (𝑆𝑇𝑂1, 𝑙, 𝑦) 

 

Equation 13: Emissions accounting 

∑ 𝐴𝑛𝑛𝑢𝑎𝑙𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑟, 𝑡, 𝑒, 𝑦) ≤

𝑦

𝐴𝑛𝑛𝑢𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡(𝑟, 𝑒, 𝑦) 

 

Equation 14: Emission constraints 

𝐴𝑛𝑛𝑢𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑟, 𝑡, 𝑒, 𝑦) ≤ 𝐴𝑛𝑛𝑢𝑎𝑙𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑟, 𝑡, 𝑒, 𝑦) ∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑟, 𝑒, 𝑦) 
 

Equation 15: Annual emission penalty 

 

 

The model minimizes the total costs of the energy system. Thus, it also calculated 

different parts of the total cost as shown in Equation 16 to Equation 20.  

𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =  ∑ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(𝑟, 𝑡, 𝑦) ∗ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑦) −𝑡,𝑦

𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑟, 𝑡, 𝑦)  

Equation 16: Total capital cost 
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𝑇𝑜𝑡𝑎𝑙𝐹𝑖𝑥𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 =  ∑ 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡(𝑟, 𝑡, 𝑦) ∗ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑦)

𝑡,𝑦

 

 

𝑇𝑜𝑡𝑎𝑙𝐹𝑖𝑥𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 =  ∑ 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡(𝑟, 𝑡, 𝑦) ∗ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑟, 𝑡, 𝑦)

𝑡,𝑦

 

Equation 17: Fixed operating cost 

𝑇𝑜𝑡𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 =  ∑ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶𝑜𝑠𝑡(𝑟, 𝑡, 𝑦) ∗ 𝐴𝑛𝑛𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑡, 𝑦)

𝑡,𝑦

 

Equation 18: Total variable operating cost 

𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =  ∑ 𝐴𝑛𝑛𝑢𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑟, 𝑡, 𝑒, 𝑦)

𝑡,𝑒,𝑦

 

Equation 19: Total emission penalty 

 
𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =  𝑇𝑜𝑡𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 +  𝑇𝑜𝑡𝑎𝑙𝐹𝑖𝑥𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 +  𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Equation 20: Total fixed operating cost 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡 =  𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑜𝑠𝑡 +  𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 

The main objective of the optimization model is called the objective function. Here, the 

objective is to minimize the total system cost. This is shown in Equation 21. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑀𝑖𝑚𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡) 

Equation 21: Objective function 

All the equations in the code of the TEO module can be found in Appendix.  

  Interaction with other modules 
The TEO module is linked to all the modules in the EMB3RS platform. The module 

obtains inputs from the CF module, has a two-way input-output link with the GIS 

module and provides inputs for the market and business modules.  

Figure 3 shows the inputs to the TEO and the outputs from the TEO to the modules.  

 

 Pre-Conditions 
For the simulation of the TEO module on the EMB3RS platform, the following 

conditions: 

• The user must be logged into the platform 

• The user must have inserted all mandatory input data for TEO 

• The CF module must have run successfully and generated inputs for the TEO 

• The GIS module must have run successfully and generated inputs for the TEO 
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 Input data error handling 
The TEO will be capable of picking out errors in the user’s input data before running 
the module. A simple script is being added, which will look for conflicting inputs from 
the user which could lead to an infeasible model. For example, if the user inputs the 
minimum allowed heat generation from technology to be greater than the maximum 
allowed heat generation, then the TEO would send out a message asking the user to 
check the inputs for the two parameters. This script is currently being developed and 
will be integrated into the code as a function that will check the inputs before executing 
the model.  
 

 

Figure 3: Data transfer between TEO and the other modules (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

https://creativecommons.org/licenses/by/4.0/legalcode
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The CF accesses the emission factors and penalties from the regulatory framework. 

These are then passed to the TEO. TEO module is linked to the GIS and CF module 

to design the capacities of the heat generation technologies and the heating network. 

The outputs from TEO are given to the GIS module for the iterative process. Other than 

this, the output from the TEO module provides some inputs to the market and business 

module.  

The iteration between the TEO, the CF and the GIS modules will take place in two 

steps. In the first step, the GIS module will provide values for DHC costs and average 

network losses considering all possible connections in the network. The losses in the 

network consist both of energy and exergy losses. The CF module calculates the 

maximum possible heat generation capacities at the sources based on the temperature 

availability. To compensate for the exergy losses, the technologies on the source side 

must produce heat at higher temperatures. The CF module will account for the exergy 

losses and calculate the maximum possible heat generation capacities for all the 

sources side technologies. In some cases, additional temperature-boosting 

technologies such as heat pumps would be needed to overcome the exergy losses. 

The CF will provide the corrected maximum capacities of the technologies to the TEO.  

TEO will then determine the least cost matching of sources and sinks considering the 

energy losses in the network. Since the loss values from the GIS are as power losses 

(in terms of kW), these losses are added to the sink demand in each hour. The TEO 

then determines the optimal matching of sources and sinks. Based on this, the 

exchange capacities between the sources and the sinks i.e. the maximum exchange 

between each source and sinks are calculated. The exchange capacities indicate the 

hourly heat flow from each source to each sink in the network. The maximum hourly 

heat exchange between each source and sink will be used by the GIS module to design 

the pipe capacities in the district heating network. The sources and the sinks in the 

network and the maximum hourly heat exchange between each source and sink will 

be fed back to the GIS. In Some cases, the TEO might discard certain sources due to 

the lack of profitability. This information is also passed on to the GIS module.   

In the second step, the GIS will use the calculated maximum exchange capacities to 

determine the accurate losses and the investments costs of the DHC. These losses 

are once again fed into the CF to determine the corrected maximum capacities 

accounting for the exergy losses and forward this information to the TEO. These results 

are then fed into the TEO to obtain the accurate least-cost mix of technologies. A 

schematic of the iteration is shown in Figure 4.  
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Figure 4: TEO-CF-GIS iterations (Author: Shravan Kumar, licensed under CC-BY 4.0) 

In every iteration, the loss value from the GIS is monitored and used as a critical value 

for stopping the iteration. When the difference in the loss values in two consecutive 

iterations is below 0.01%, the iterations are stopped.  
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The market and business modules directly use the TEO results. The market module 

uses the installed capacities of the different technologies to calculate the dispatch from 

each technology. The business module uses the capital investment and operation and 

maintenance costs of the different technologies and storage, and the salvage values 

to analyse the financial feasibility of the project.  

 

2.6  Reports 
The simulation reports and the results produced by the TEO module are presented in 

this section.  

 

 Contribution to the main Simulation report 
 

The main results of the TEO module will be included in its contribution to the main 

simulation report. The main results of the TEO are the Cost of the total system and the 

annual capacities and heat generation and consumption of the sources and the sinks 

respectively. Furthermore, the logs in the TEO can also be used to identify whether the 

optimal solution is reached or if there is an error in the module. The description of the 

main results and the formatting instruction are presented in Table 7. 

 
Table 7: Main results from TEO (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Variable Name Description Formatting 

instructions 

Cost 
The overall cost of the 

system 

None – This will be 

displayed as a number 

AccumulatedNewCapacity 

The installed capacity 

of all technologies on 

the sink and source 

side for each year in 

the analysis period. 

This can be displayed 

as a graph over each 

year as shown in 

Figure 5. 

ProductionByTechnologyAnnnual 

The yearly heat 

generation from each 

technology on the 

source and the sink 

sides 

This can be displayed 

for each year as a 

graph over all 

technologies as shown 

in Figure 6. 
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Figure 5: Example output for AccumulatedNewcapacity (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 
Figure 6: Example for ProductionByTechnologyAnnual (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 Detailed Module report and configuration 
 

This section of reports will contain all the main results from the TEO. These are listed 

along with the description and the formatting instruction in  

 
Table 8: Detailed results from the TEO (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Variable Name Description Formatting 

instructions 

Configuration 

by the user 

AccumulatedNewStorageCapacity 
The capacity 

of the 

This can be 

presented as 

The user can 

select the year 
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analysed 

storage 

facilities in 

each year. 

a graph for a 

selected year 

as shown in 

Figure 7.   

to be used to 

be visualized 

ProductionByTechnology 

The intra 

annual heat 

generation 

from each 

technology 

This can be 

presented as 

a graph for a 

selected year 

as shown in 

Figure 8   

The user can 

select the year  

and the 

technologies 

to be 

visualized 

StorageLevelTimesliceStart 

This indicates 

the intra 

annual level 

of each 

storage. This 

can be useful 

to look at the 

charging and 

the 

discharging of 

the storage 

facilities 

This can be 

presented as 

a graph for a 

selected year 

as shown in 

Figure 9   

The user can 

select the year 

and the 

storage 

facilities to be 

visualized 

 

 
Figure 7: Accumulated New Storage capacity (Author: Shravan Kumar, licensed under CC-BY 4.0) 
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Figure 8: Production by technology (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 
Figure 9: Storage level TimeSlice start (Author: Shravan Kumar, licensed under CC-BY 4.0) 

3 User Manual 

3.1 Introduction to the TEO 
The Techno-Economic Optimization (TEO) module identifies the least-cost 

combinations of technologies for using and conveying excess Heat and Cold (HC) from 

defined sources to defined sinks. The user (representing the excess heat producer - 

i.e., source – or a demand point – i.e., sink) wants to evaluate the options of utilizing 

excess HC generated to meet the heating/cooling demand for one or more 

known/assumed sinks. The objective of the optimisation is to find the least-cost mix of 

technologies and match between sources and sinks that satisfies the demands under 
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constraints dictated by regulation, availability of heat, load profiles, techno-economic 

characteristics of technologies, investment plans, etc. The mix of technologies may 

include the District Heating/Cooling Network (DH/CN), technologies to upgrade the 

Temperature level on the sink or the source side, thermal storage on the sink or the 

source side, as well as heating alternatives.  

The main requirements of the tool for building the techno-economic optimisation 

module within the EMB3RS framework are: 

• High temporal resolution – Daily to hourly 

• Low simulation time 

• High flexibility and ability to be modified 

• Interaction and interoperation with other modules 

• Open access 

The techno-economic optimisation module should provide the following results: 

• The technology mix (in terms of existing and newly installed yearly capacities in 

terms of energy flows throughout the supply-demand chain) 

• Share of each technology in meeting the demand in any time step of the analysis 

(where the time resolution is defined by the user within certain limits) and 

throughout the analysis period  

• Annual costs (investment, fuel, operation & maintenance, Levelized costs of 

heat (LCOH) etc.) associated with the technologies  

• Emissions, emission savings and emission costs over the defined period. 

3.2  Main Features of the TEO Module  
• The TEO module optimizes the matching between the different sources and the 

sinks while taking into accounts various technical and economic constraints, 

such as demand profiles, technology cost, efficiencies and losses while also 

considering thermal energy storage. 

• An optimal mix of investments in technologies and optimal capacities in storage 

and district heating network can be determined. The operation of the technolo-

gies and the intra-annual heat supply are also optimized in the module.  

• The module can also analyze the competition between centralized and decen-

tralized. The current input data includes competition between waste heat 

sources and decentralized solar thermal based heating solutions 
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• The TEO module optimizes the matching between the different sources and the 

sinks while taking into accounts various technical and economic constraints, 

such as demand profiles, technology cost, efficiencies and losses while also 

considering thermal energy storage. 

• The TEO module carries out a socio-economic type of optimisation, where the 

total system cost is minimised, irrespective of who bears it. It does not take a 

policy-maker, investor, or business perspective. 

• The time domain, time resolution and technological options are flexible and cho-

sen by the user. For example, an analysis can be carried out for a time domain 

of 5, 10 or 30 years. Similarly, the time resolution can be of few time steps in a 

year, up to 8760 hourly time steps. The types of technologies that can be mod-

elled include heat exchangers, heat pumps, boilers etc. The module is a model 

generator, where none of the above is pre-defined. 

• The module relies on two core types of objects: Technologies and Fuels. These 

are very flexibly defined so that many different processes and commodities can 

be represented in a model. A Technology is nothing but a process - I.e. a box – 

with inputs, outputs, a transfer function between them, and several associated 

techno-economic characteristics. A Fuel is any commodity entering or exiting a 

Technology. Therefore, with a Technology, the user may represent a heat ex-

changer or a heat pump and for Fuel, the user may represent electricity or the 

excess heat stream.  

 

 

3.3  User inputs 
The user gives inputs through the platform. To improve the user-friendliness of the 

platform, a detailed description is provided for each user input. Furthermore, it will also 

be conveyed to the user if the input is mandatory or not. If the user does not give a 

value for a no-mandatory input, it will be obtained from the default values stored in the 

knowledge base. 

3.3.1.1 SETS  
The initial inputs to the TEO module consist of the global sets in the model. The ‘sets’ 
define the physical structure of a model, usually independent from the specific 
scenarios which will be run. They define the time domain and time resolution, the 
spatial coverage, the technologies, and energy vectors to be considered, etc. Some of 
these inputs are mandatory since they are essential for building the cost optimization. 
These are shown in Table 9. The description for each set is also provided in Table 9. 
A sample value to be entered for each SET is shown in the column ‘Value’. An intra-
annual time resolution of 48 time slices is used in this case (but it can be lower or 
higher, up to hourly time steps!). This has been done to obtain quick results for the 
purpose of the workshop. A time period of one year has been used (but longer time 
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periods can be analysed, with results given per year). Two storage facilities have been 
implemented to demonstrate the two types of storage that can be modelled in the TEO. 
‘CST’ identifies the centralised storage which is connected to the district heating 
network and ‘DST’ refers to a de-centralised storage on the source site.  
  

 

 

Table 9: TEO Global SETS 

Label  Description  Value  

Region  

It sets the regions to be modelled, e.g., different 

countries, cities, counties etc. For the purpose of this 

analysis, it is enough to have one region name. For 

each of them, the supply-demand balances for all the 

energy vectors are ensured. On some occasions, it 

might be computationally more convenient to model 

different countries within the same region and 

differentiate them simply by creating ad hoc fuels 

and technologies for each of them.  

‘Greece’  

Emission  

It includes any kind of emission potentially deriving 

from the operation of the defined technologies. 

Typical examples would include atmospheric 

emissions of greenhouse gasses, such as CO2. The 

user must fill in 'co2' as a mandatory entry. Other 

entries are also allowed  

‘CO2’  

Time resolution  
It represents the time steps of each modelled year, 

therefore the time resolution of the model.  
Weekly 

Time period (Year) 
It represents the period of the model; it contains all 

the years to be considered in the analysis.  
2023 

Mode of operation  

It defines the number of modes of operation that the 

technologies can have. If a technology can have 

various input or output fuels and it can choose the 

mix (i.e., any linear combination) of these input or 

output fuels, each mix can be accounted as a 

separate mode of operation. The user must input at 

least 1 mode of operation. There must be two modes 

of operation if storage is used in the model  

1 

  

 
Taking the values from Table 9, insert the value for each set in the TEO inputs section 
of the ‘Create simulation’ window on the platform as shown in Figure 10 and Figure 11. 
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Figure 10: Inputs to the TEO -1 

 
Figure 11: Inputs to the TEO -2 

3.3.1.2 Step 6.2: Storage inputs  

 
Figure 12: Storage inputs to the TEO 
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Table 10: Storage inputs 

Label Description 
Value (Unit) 

tankstorage sourcestorage 

Storage capital 

cost 

Investment costs of 

storage additions, defined 

per unit of storage 

capacity. 

600 €/kWh 300 €/kWh 

Storage discount 

rate 

Storage specific value for 

the discount rate, 

expressed in decimals 

0.04 0.05 

Storage 

operational life 

Useful lifetime of the 

storage facility. 
50 30 

Storage 

maximum 

charge rate 

Maximum charging rate 

for the storage 
200 kWh 50 kWh 

Storage 

maximum 

discharge rate 

Maximum discharging rate 

for the storage 
200 kWh 50 kWh 

Storage length 

to diameter 

ratio 

Binary parameter which 

indicates the length to 

diameter ratio of the 

thermal energy storage 

tank. Value is 0 if the L2D 

is 2 and is 1 if the L2D is 4. 

1 0 

Storage heating 

tag 

Binary parameter 

indicating whether the 

thermal energy storage is 

connected to the district 

heating network. 1 if it is 

connected and 0 is if is not. 

1 1 

Storage cooling 

tag 

 

Binary parameter 

indicating whether the 

thermal energy storage is 

connected to the district 

cooling network. 1 if it is 

connected and 0 is if is not. 

0 0 

Storage hot The return water 60 °C 65 °C 
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water return 

temperature 

temperature in the heating 

grid where the thermal 

energy storage is 

connected. 

Storage hot 

water supply 

temperature 

The temperature of water 

inflow into thermal energy 

storage. 

80 °C 85 °C 

Average 

ambient 

temperature of 

the region 

The average ambient 

temperature of the 

locations where the 

thermal energy storage is 

located. 

15 °C 15 °C 

Residual storage 

capacity 

Exogenously defined 

storage capacities at the 

start of the modeling 

period 

0 kWh 0 kWh 

Maximum 

storage capacity 

Maximum allowed 

capacity of each storage in 

a year 

1000 kWh 100 kWh 

Starting level of 

storage 

Level of storage at the 

beginning of first modelled 

year 

0 kWh 0 kWh 

Heat transfer co-

efficient of the 

thermal storage 

Heat transfer co-efficient 

of the thermal energy 

storage tank. 

0.22 kW/KgK 0.19 kW/KgK 

 

3.3.1.3 Step 6.3: Emission and budget constraints inputs  
The TEO module also accounts for the emission from each technology in the system. In the 

SETS, we had earlier defined ‘CO2’ in the ‘EMISSION’ set (more emissions could be defined, 

but we do not consider them in this case, for simplicity). The emission factor (kgCO2/kWh) for 

each technology is provided to the TEO from the the default database. Using this, the emission 

from each technology is calculated in the TEO. As a constraint, it is possible to limit the 

emission from the excess heat recovery system. For the workshop, the emission limit is defined 

as shown in Table 11.  
 

Table 11: TEO Emission Limit 

Label  Description  Value (Unit)  

Annual emission 

limit  
Annual upper limit for a specific emission 

generated in the entire modelled region.  
150000000000 

Kg CO2  
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The TEO module also accounts for the maximum budget for the project. This can be done using 

the ‘Maximum Budget Limit’ constraint. The input for this exercise is as shown in the Table 
12. The value is set as very high so that we do not consider any budget constraint. 

 

 

Table 12: TEO Budget Limit 

Label  Description  
Value 

(Unit)  

Maximum Budget 

limit 
It represents the maximum investment budget for 

the project (€) 

1500000000 

€ 

 

The inputs can be entered as shown in Figure 13.  
 

 
Figure 13: Emissions and budget constraints for the TEO module 

 
 

3.4  Simulation 

 Actors 
 

The term ‘Actors’ identifies all the separate entities that will be involved during a 

simulation of the TEO module. In the case of the TEO module, it will involve the user, 
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the knowledge base and all the modules that provide any inputs to the TEO as shown 

below: 

 

• Platform User  

• Knowledge base 

• Core functionalities (CF) module 

• Techno-economic optimization (TEO) module 

• Geographical Information System (GIS) module 

 Pre-Conditions 
For the simulation of the TEO module on the EMB3RS platform, the following 

conditions: 

• The user must be logged into the platform 

• The user must have inserted all mandatory input data for TEO 

• The CF module must have run successfully and generated inputs for the TEO 

• The GIS module must have run successfully and generated inputs for the TEO 

 

 Basic Flow for the user  
The basic flow of the simulation is shown in Figure 14. The TEO module obtains 

inputs from the CF and the GIS module. The inputs are first prepared and then the 

function ‘buildmodel’ is executed. If the data present a feasible model, the model is 

solved and the optimal solution is found. If the data do not present a feasible 

solution, an error message appears, which explains to the user where the run was 

not successful. The results are post-processed and forwarded to the user and other 

modules.  

 

 

 

 

 

 

 

 

 

 

 

 

      



This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N°847121 

The EMB3RS Techno-Economic Optimization Module   

 

68 

 

Figure 14: Basic flow for the user (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 

For the simulation: 

1. The user enters the platform and runs the CF and the GIS modules 

2. The user provides the inputs for the sets, storages and technologies 

a. SETS: 

i. The user chooses the modelled region 

ii. The user chooses the emissions to the included in the model 

iii. The user chooses the time resolution of the model 

iv. The user includes the period of the analysis 

v. The user chooses the number of modes of operation  

vi. The user enters the number of storage options 

https://creativecommons.org/licenses/by/4.0/legalcode
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Example input for Time period (number of years to be analysed) and Time resolution 

(number of intra-annual time steps) is shown in Figure 15. 

 
Figure 15: Mock-up example input or analysis period and Time resolution (Author: Shravan Kumar, licensed 

under CC-BY 4.0) 

 

b. Technology: 

i. The user enters the following data for each technology  

1. Availability factor (No units) 

2. Technology discount rate (No units) 

3. Capacity to Activity ratio (kWh/kW) 

4. Residual capacity (kW) 

5. Maximum annual capacity addition (kW) 

6. Minimum capacity (kW) 

7. Minimum annual capacity addition (kW) 

8. Minimum annual heat generation (kWh) 

9. Maximum annual heat generation (kWh)  

10. Minimum model period heat generation (kWh) 

11. Maximum model period heat generation (kWh) 

Example input for the user input parameters for each technology is shown in Figure 

16. Here, the list of technologies is obtained from the CF module. The user can choose 

to enter a value for each parameter for each technology. If the user does not enter the 

values, the default values from the knowledge base (shown in Table 6) will be used. 

The second step of the input is shown in Figure 17. 
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Figure 16: Mock-up user input for technology parameters (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 
Figure 17: Mock-up for Step 2 of user input for technology parameters - entering values (Author: Shravan Kumar, 

licensed under CC-BY 4.0) 

 

c. Storage: 

1. Storage capital cost (€/kWh) 

2. Storage discount rate (No units) 

3. Storage operational life (Years)  

4. Storage maximum charge rate (kWh) 

5. Storage maximum discharge rate (kWh) 

6. Storage length to diameter ratio (No units) 

7. Storage heating tag (No units) 

8. Storage cooling tag (No units) 

9. Storage hot water return temperature (°C) 

10. Storage hot water supply temperature (°C) 

11. Average ambient temperature of the region (°C) 

12. Residual storage capacity (kWh) 

13. Maximum storage capacity (kWh) 

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N°847121 

The EMB3RS Techno-Economic Optimization Module   

 

71 

14. Starting level of storage (kWh) 

15. Heat transfer co-efficient of the thermal storage (kJ /kg k) 

16. Annual emission limit (Kg CO2) 

17. Technology charging storage (No units) 

18. Technology getting discharge from storage (No units) 

 

Example input for the user input parameters for each storage is shown in Figure 18. 

Here, the list of storages is obtained from previous user inputs. The user can choose 

to enter a value for each parameter for each storage. If the user does not enter the 

values, the default values from the knowledge base (shown in Table 6) will be used. 

The second step of the input is shown in Figure 19. 

 

 
Figure 18: Example user input for storage parameters (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 
Figure 19: Step 2 of Example user input for storage parameters - entering values (Author: Shravan Kumar, 

licensed under CC-BY 4.0) 

 

3. Data and the Reference energy system are displayed to the user and they can 

validate and/or modify the data 

https://creativecommons.org/licenses/by/4.0/legalcode
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When developing a model using an optimization, the energy system needs to be 

mapped to identify all the relevant technologies and fuels that will be involved in the 

analysis. The schematic representation of the system for such purposes is called Ref-

erence Energy System (RES). A reference energy system of a test case for the TEO 

is shown in Figure 20. 

 

 
Figure 20: Sample Reference Energy System (Author: Shravan Kumar, licensed under CC-BY 4.0) 

The lines represent energy carriers (e.g., Flue gas, district heating water etc.) while the 

blocks represent heat conversion and generation transformation technologies (e.g., 

heat exchanger, heat pump, boiler etc.). The RES can be read from the left to the right. 

On the left-hand side, the excess heat resources are represented. Sources of excess 

heat are represented as technologies in the RES (i.e. boxes with outgoing lines 

representing the fuels they make available). Importantly, each chain must always start 

with technology. Moving from the left to right, the energy carriers are transformed by 

different technologies, each with a transfer function, to ultimately meet the final demand 

for energy or services, presented by the lines on the far right-hand side. This allows 

the user to visualize the analysed case from the recovery of excess heat to meeting 

the final demand for heat or cold.  

 

4. Input data is saved automatically 

5. The TEO Simulation is run 

a. If the simulation is feasible, the model is solved and the results are sent 

to the user and the other module. 

b. If the simulation is not feasible, a message saying that ‘Infeasible: No 

solution exists is displayed. 

c. Simulation is too large for the platform, a message saying that 

‘Simulation: Out of memory, simulation is too large for the platform. 

Please reduce the time resolution.’ 
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 User-defined constraints 
 

To increase the user-friendliness of the platform, ‘User-defined’ constraints can be 

introduced, through which the user can set some limits for the decision variables in the 

TEO module. Four preliminary user-defined constraints are suggested for the platform. 

The constraints, their description, the initial plan for executing the constraints in the 

platform and the status of execution are presented in Table 13. 

 
Table 13: User-defined constraints (Author: Shravan Kumar, licensed under CC-BY 4.0) 

Constraint Description Plan for execution 
Status of 

execution 

Maximum 

storage 

capacity 

The user can set 

the maximum 

possible capacity 

for each storage in 

the TEO 

‘Maximum storage capacity is user 

input for the TEO. Using this 

parameter, this constraint can be 

added. 

Completed 

Minimum 

Share of 

excess 

heat 

The user can set 

the minimum share 

of excess heat in 

the heating system 

as a percentage 

value. For example, 

if the user inputs a 

value of 25%, then 

at least 25% of the 

heat demand will 

be met using 

excess heat. 

‘Minimum annual heat generation’ 

for each technology is a user input 

to the TEO. However, it is not the 

same value as the minimum share 

of waste heat. Hence, some 

calculations will be needed to 

determine the minimum annual 

heat generation from the minimum 

share of waste heat. It is proposed 

to have these calculations before in 

the platform before the inputs are 

sent to the TEO. 

In 

progress 

Maximum 

Budget for 

the project 

This will let the user 

set a maximum 

capital investment 

cost for the 

technologies. 

There is a possibility o limit the 

overall investment cost of the 

project in the TEO. This will simply 

constrain the capital investment for 

the technologies. Since the TEO 

module determines the least-cost 

solution by optimising the costs, 

placing a constraint on the cost 

component in the model will lead to 

sub-optimal results. Furthermore, 

the TEO module optimises the 

overall cost of the system and 

hence does not consider the 

disaggregation of costs for each 

actor. Thus, the constraint is 

Completed 
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specified for the overall project. 

Furthermore, if the specified budget 

constraint is too low, then the case 

becomes infeasible. 

Maximum 

emission 

limit 

The user can set 

the maximum 

possible emission 

from the analysed 

system 

‘Annual emission limit’ is user input 

for the TEO. Using this parameter, 

this constraint can be added. 

Completed 

Carbon tax 

The user can set 

the carbon tax or 

emission penalty 

from the analysed 

system 

‘Emission penalty’ is an input for 

the TEO. Using this parameter, this 

constraint can be added. It must be 

clarified whether this constraint 

overlaps with the inputs from the 

regulatory framework. 

In 

progress 

 

 

3.5  Running a Test Case using the standalone 

version of the TEO 
The standalone version of the TEO indicates the version of the tool that can be 

accessed and run outside the EMB3RS platform which can be accessed here. It has 

the same functionalities as the version integrated with the platform. However, all the 

inputs for this version are obtained from the user, since it is not linked with any other 

module. The standalone version uses an excel sheet for inputs to the module and to 

save the results from the module. 

  Description of the test case 
This section introduces the user to the basic components of any application of TEO 

and describes the steps for the creation of a model. To this end, a sample case study 

is used and examples from it are shown throughout the section.  

The sample case study for TEO represents a case of industrial excess heat recovery 

and use. The simple use case consists of two excess heat producers - Supermarket 

and Metal casting Industry - and three sink points - District Heating and Cooling grid 

(DHC), office buildings and residential buildings. Generic demand profiles are used for 

all the sinks. The model is simulated over 10 years and at an intra-annual time 

resolution of 48 TimeSlices. Note that a low time resolution is used for the test case so 

that the user can obtain the results quickly (in minutes). The TEO can model at higher 

resolution, but the simulation times also become longer. The boundaries of the system 

represented in the case study are shown in the schematic representation shown in  

Figure 21. 

https://github.com/ShravanKumar23/EMB3RS-TEO-Module
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Figure 21: Reference energy system (Author: Shravan Kumar, licensed under CC-BY 4.0) 

In the Reference Energy System (RES), the rectangles represent the technologies, the 

arrows represent the flow of energy and the vertical lines represent fuels. The RES is 

read from the left to the right. The primary energy supply side is on the left and the final 

energy demand side is on the right. The source nodes, the metal casting industry and 

the supermarket are modelled as technologies, whereas the sink nodes, being 

residential buildings, office buildings and DHC are modelled as fuels. The distribution 

grid has also been added as technology as some components can either require or 

produce electricity. For the test case, the heat pumps in the system will require 

electricity to operate. The first set of vertical lines represents fuels at the primary level. 

These primary fuels consist of electricity, waste heat from the outflows of the metal 

casting industry at three different temperatures, and waste heat from the supermarket. 

The waste heat from each source is supplied to a set of technologies. Here, we assume 

a Heat Exchanger (HE), Waste Heat Recovery Boiler (WHRB) for the first waste heat 

outflow from the industry. Similarly, the second outflow makes use of a HE and a 

WHRB. The third outflow is provided to a Heat Pump (HP) and a HE. The supermarket 

waste heat is provided with an HP.  

The outflow temperatures of the metal casting industry are to be at 300°C, 90°C and 

70°C Celsius for its three outflows whereas the waste heat from the supermarket is at 

50°C. On the sinks’ side, the DHC demand temperature is the same as the average 

supply temperature of the DHN, which is at 90°C. The demand temperature profile of 

the office buildings is the same as that of the residential buildings at 90°C. The sources 

and the sinks are equipped with storage. This implies that the generation and supply 
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technologies be connected to storage technology, and also, the demand technologies 

are connected to storage systems. 

Only one storage can be chosen for a set of technologies. Here, each technology is 

connected to a storage option. Based on the technology that is selected from the 

optimization process, the energy will be stored from the technology in the 

corresponding storage. 

The technologies are assessed for feasibility and selected in the process. The 

converted useful heat at the suitable temperature (here, the network temperature) is 

stored and supplied to the secondary fuel level. The secondary level fuel is the 

converted useful heat. The converted useful heat is then supplied to the District 

Heating Network, which is modelled as a technology. The network is similar to the 

distribution grid being modelled as a technology, and they both account for losses. The 

heat from the network is supplied to all demand points by first being transformed into 

a tertiary level fuel of district heating water. To further assess the feasibility of the 

demand side system, solar technologies have been added. Solar thermal technologies 

have been added to all sinks. 

  Data and instructions to run the model 
This section refers to the standalone version of the TEO module (not integrated with 

the platform or other modules). This can be accessed here. The input file for the 

prototype is ‘Input_file_TEO.xlsx’, which can be accessed at the GitHub repository 

here. To run the TEO, the code files named ‘TEO_Model’, ‘TEO_functions’, 

TEO_running_file’, and the input file must be downloaded from the GitHub repository 

here and saved in a specific manner. The main folder called ‘TEO’ must be created 

and the code will be downloaded into this folder. Within this main folder, two subfolders 

named ‘Input_data’ and ‘Output_data’ must be created. The input file must be saved 

into the ‘Input_data’ folder. A representation of how the files must be organised in the 

folder is shown below.   

• TEO (Main folder)  

o Input_data  

▪ Input_file_TEO.xlsx  

o Output_data  

o TEO_Model 

o TEO_functions 

o TEO_running_file 

 

Once the TEO simulation is completed, the results file named ‘TEO_Results.xlsx’ will 

be saved in the ‘Output_data’ sub-folder.  

https://github.com/ShravanKumar23/EMB3RS-TEO-Module
https://github.com/Emb3rs-Project/p-teo
https://github.com/Emb3rs-Project/p-teo
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Once the files are downloaded and the folder structure is established, the model can 

be run using the TEO_running_file. The name of the input directory and the input file 

must be checked in the TEO_running_file. Since the name of the input file is to be 

checked and altered, it is advisable to open the TEO_running_file in a python IDE or 

other open-source python notebook interface such as ‘Jupyter lab’ or ‘Visual studio 

code’. Both these are freeware and can be downloaded. The TEO module can output 

results in two formats, excel and CSV. The preference for the output format can also 

be set in the TEO_running_file by specifying a ‘True’ or ‘False’ next to the output 

formats in the TEO_running_file. 

  Note on the solvers 
Two solvers, GLPK (GNU linear programming kit) and CBC (Coin-or branch and cut) 

are inbuilt into the module. To use other solvers, they should be downloaded and 

installed. Instruction for this can be found here. After the installation of the solver, the 

solver path needs to be added as an environment variable and then should be called 

into python using solver commands. Step by step instructions for adding the 

environment variables can be found here. The user can analyse the data based on the 

results saved in the output file. The user can also use other solvers such as CPLEX 

and Gurobi to run the TEO. The solver name and path must be specified in the 

TEO_running_file as shown in Figure 22. 

https://coin-or.github.io/pulp/guides/how_to_configure_solvers.html
https://coin-or.github.io/pulp/guides/how_to_configure_solvers.html
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Figure 22: Updating input file in the code (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

  Results from the Test Case 
If run correctly, the Test Case will provide the results shown in the following. Note that 

these results are only a selection of the key outputs, condensing some of the important 

insights. Outputs for all the ‘variables’ listed in the previous sub-sections are calculated. 

They can also be extracted and visualised.  

• The technology mix (in terms of existing and newly installed yearly capacities in 

terms of energy flows throughout the supply-demand chain) 
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• The installed capacities at the different sources are shown in  

• Figure 23. The model only uses two sink outflows from the Metal casting 

industry. The excess heat from the supermarket is not used use due to the low 

temperatures and thus needs expensive investments.  

 

Figure 23: Installed capacity at the sources (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 

• The sink capacities are based on the sink demand. As the demand grows over 

the years, the capacity is also increased.  

 

Figure 24: Installed capacity at the sinks (Author: Shravan Kumar, licensed under CC-BY 4.0) 
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• Share of each technology in meeting the demand in any time step of the analysis 

(where the time resolution is defined by the user within certain limits) and 

throughout the analysis period  

• The installed capacities of storage are shown in  

• Figure 25. The model only installs storage at the sink site since it is easier to 

control installed capacities in the DHN if the storage is located after the DHN. 

The storage capacities are also based on the sink demand. As the demand 

grows over the years, the storage capacity is also increased.  

 

Figure 25: Installed capacity of storage (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

• The Intra annual heat generation from sources is shown in   

• Figure 26. The heat generated from the sources does not follow the demand 

profile due to the storage in the system. We see that the heat generation is 

constant in most time steps and there are drastic variations in a few TimeSlices.  

This is because of the charging and discharging from the storage, which is seen 

next. 
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Figure 26: Intra annual heat generation from sources (Author: Shravan Kumar, licensed under CC-BY 4.0) 

The Intra annual storage charge or discharge for Residential buildings is shown in  
Figure 27. The storage is continuously cycled according to the sink demand profiles.  

 

 

 

Figure 27: Intra annual storage charge or discharge for Residential buildings (Author: Shravan Kumar, licensed 

under CC-BY 4.0) 
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• Annual costs (investment, fuel, operation & maintenance) associated with the 

technologies. The investment costs for the sinks are shown in  

• Figure 28. 

 

Figure 28: Investment cost for sources and sinks (Author: Shravan Kumar, licensed under CC-BY 4.0) 

 

 

• The operation and maintenance costs of the sources and the sinks are shown 

in  

• Figure 29. 

 

Figure 29: Total operating costs for Source/Sink (Author: Shravan Kumar, licensed under CC-BY 4.0) 
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5 Appendix 1 

Equations of the TEO code 
        for rfly in REGION_FUEL_TIMESLICE_YEAR: 

            # EQ_SpecifiedDemand 

            model += RateOfDemand.get(ci(rfly)) == 

SpecifiedAnnualDemand.get(ci([*rfly[0:2], rfly[3]]), dflt.get('SpecifiedAnnualDemand')) 

* SpecifiedDemandProfile.get(ci(rfly), dflt.get('SpecifiedDemandProfile')) / 

YearSplit.get(ci(rfly[2:4])), "" 

 

        # ====  Capacity Adequacy A  ==== 

 

        for rlty in REGION_TIMESLICE_TECHNOLOGY_YEAR: 

            # CAa3_TotalActivityOfEachTechnology 

            model += RateOfTotalActivity.get(ci(rlty)) == 

pulp.lpSum([(RateOfActivity.get(ci([*rlty[0:2], m, *rlty[2:4]])) * 

OutputModeofoperation.get(ci([rlty[0], m, *rlty[2:4]]), 

dflt.get('OutputModeofoperation'))) for m in MODE_OF_OPERATION]), "" 

            # CAa4_Constraint_Capacity 

            model += RateOfTotalActivity.get(ci(rlty)) <= 

TotalCapacityAnnual.get(ci([rlty[0], *rlty[2:4]])) * CapacityFactor.get(ci(rlty), 

dflt.get('CapacityFactor')) * CapacityToActivityUnit.get(ci([rlty[0], rlty[2]]), 

dflt.get('CapacityToActivityUnit')), "" 

 

        for rty in REGION_TECHNOLOGY_YEAR: 

            # CAa1_TotalNewCapacity 

            model += AccumulatedNewCapacity.get(ci(rty)) == 

pulp.lpSum([NewCapacity.get(ci([*rty[0:2], yy])) for yy in YEAR if (float(int(rty[2]) - 

int(yy)) < float(OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife')))) and 

(int(rty[2]) - int(yy) >= 0)]), "" 

            # CAa2_TotalAnnualCapacity 
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            model += TotalCapacityAnnual.get(ci(rty)) == 

AccumulatedNewCapacity.get(ci(rty)) + ResidualCapacity.get(ci(rty), 

dflt.get('ResidualCapacity')), "" 

 

            if CapacityOfOneTechnologyUnit.get(ci(rty), 

dflt.get('CapacityOfOneTechnologyUnit')) != 0: 

                # CAa5_TotalNewCapacity 

                model += NewCapacity.get(ci(rty)) == 

CapacityOfOneTechnologyUnit.get(ci(rty), dflt.get('CapacityOfOneTechnologyUnit')) * 

NumberOfNewTechnologyUnits.get(ci(rty)), "" 

 

        # ====  Capacity Adequacy B  ==== 

 

            # CAb1_PlannedMaintenance 

            model += pulp.lpSum([RateOfTotalActivity.get(ci(rlty)) * YearSplit.get(ci([l, 

rlty[3]])) for l in TIMESLICE]) <= pulp.lpSum([TotalCapacityAnnual.get(ci([rlty[0], 

*rlty[2:4]])) * CapacityFactor.get(ci(rlty), dflt.get('CapacityFactor')) * YearSplit.get(ci([l, 

rlty[3]])) for l in TIMESLICE]) * AvailabilityFactor.get(ci([rlty[0], *rlty[2:4]]), 

dflt.get('AvailabilityFactor')) * CapacityToActivityUnit.get(ci([rlty[0], rlty[2]]), 

dflt.get('CapacityToActivityUnit')), "" 

 

        # ====  Energy Balance A  ==== 

 

        for rflmty in 

REGION_FUEL_TIMESLICE_MODE_OF_OPERATION_TECHNOLOGY_YEAR: 

            # EBa1_RateOfFuelProduction1 

            if OutputActivityRatio.get(ci([*rflmty[0:2], *rflmty[3:6]]), 

dflt.get('OutputActivityRatio')) != 0: 

                model += RateOfProductionByTechnologyByMode.get(ci(rflmty)) == 

RateOfActivity.get(ci([rflmty[0], *rflmty[2:6]])) * OutputActivityRatio.get(ci([*rflmty[0:2], 

*rflmty[3:6]]), dflt.get('OutputActivityRatio')), "" 
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            else: 

                model += RateOfProductionByTechnologyByMode.get(ci(rflmty)) == 0, "" 

            # EBa4_RateOfFuelUse1t 

            if InputActivityRatio.get(ci([*rflmty[0:2], *rflmty[3:6]]), 

dflt.get('InputActivityRatio')) != 0:  

                model += RateOfUseByTechnologyByMode.get(ci(rflmty)) == 

RateOfActivity.get(ci([rflmty[0], *rflmty[2:6]])) * ( 1 / 

InputActivityRatio.get(ci([*rflmty[0:2], *rflmty[3:6]]), dflt.get('InputActivityRatio'))), "" 

 

        for rflty in REGION_FUEL_TIMESLICE_TECHNOLOGY_YEAR: 

            # EBa2_RateOfFuelProduction2 

            model += RateOfProductionByTechnology.get(ci(rflty)) == 

pulp.lpSum([RateOfProductionByTechnologyByMode.get(ci([*rflty[0:3], m, *rflty[3:5]])) 

for m in MODE_OF_OPERATION if OutputActivityRatio.get(ci([*rflty[0:2], m, 

*rflty[3:5]]), dflt.get('OutputActivityRatio')) != 0]), "" 

            # EBa5_RateOfFuelUse2 

            model += RateOfUseByTechnology.get(ci(rflty)) == 

pulp.lpSum([RateOfUseByTechnologyByMode.get(ci([*rflty[0:3], m, *rflty[3:5]])) for m 

in MODE_OF_OPERATION if InputActivityRatio.get(ci([*rflty[0:2], m, *rflty[3:5]]), 

dflt.get('InputActivityRatio')) != 0]), "" 

 

        for rfly in REGION_FUEL_TIMESLICE_YEAR: 

            # EBa3_RateOfFuelProduction3 

            model += RateOfProduction.get(ci(rfly)) == 

pulp.lpSum([RateOfProductionByTechnology.get(ci([*rfly[0:3], t, rfly[3]])) for t in 

TECHNOLOGY]), "" 

            # EBa6_RateOfFuelUse3 

            # model += RateOfUse.get(ci(rfly)) == 

pulp.lpSum([RateOfUseByTechnology.get(ci([*rfly[0:3], t, rfly[3]])) for t in 

TECHNOLOGY]), "" 

            # EBa7_EnergyBalanceEachTS1 
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            model += Production.get(ci(rfly)) == RateOfProduction.get(ci(rfly)) * 

YearSplit.get(ci(rfly[2:4])), "" 

            # EBa8_EnergyBalanceEachTS2 

            # model += Use.get(ci(rfly)) == RateOfUse.get(ci(rfly)) * 

YearSplit.get(ci(rfly[2:4])), "" 

            model += Use.get(ci(rfly)) == 

pulp.lpSum([RateOfUseByTechnology.get(ci([*rfly[0:3], t, rfly[3]])) for t in 

TECHNOLOGY]) * YearSplit.get(ci(rfly[2:4])), "" 

 

            # EBa9_EnergyBalanceEachTS3 

            model += Demand.get(ci(rfly)) == RateOfDemand.get(ci(rfly)) * 

YearSplit.get(ci(rfly[2:4])), "" 

 

            # EBa11_EnergyBalanceEachTS5 

            model += Production.get(ci(rfly)) >= Demand.get(ci(rfly)) + Use.get(ci(rfly)) + 

(GIS_Losses.get(ci([*rfly[0:2]]), dflt.get('GIS_Losses')) * (8760 / 

int(max(TIMESLICE)))) + pulp.lpSum([Trade.get(ci([rfly[0], rr, *rfly[1:4]])) * 

TradeRoute.get(ci([rfly[0], rr, rfly[1], rfly[3]]), dflt.get('TradeRoute')) for rr in REGION2]), 

"" 

 

        for rr2fly in REGION_REGION2_FUEL_TIMESLICE_YEAR: 

            # EBa10_EnergyBalanceEachTS4 

            model += Trade.get(ci(rr2fly)) == -Trade.get(ci([rr2fly[1], rr2fly[0], *rr2fly[2:5]])), 

"" 

 

        # ====  Energy Balance B  ==== 

 

        for rfy in REGION_FUEL_YEAR: 

            # EBb1_EnergyBalanceEachYear1 
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            model += ProductionAnnual.get(ci(rfy)) == 

pulp.lpSum([Production.get(ci([*rfy[0:2], l, rfy[2]])) for l in TIMESLICE]), "" 

            # EBb2_EnergyBalanceEachYear2 

            # model += UseAnnual.get(ci(rfy)) == pulp.lpSum([Use.get(ci([rfy[0], l, 

*rfy[1:3]])) for l in TIMESLICE]), "" 

 

        # for rr2fy in REGION_REGION2_FUEL_YEAR: 

        #     # EBb3_EnergyBalanceEachYear3 

        #     model += TradeAnnual.get(ci(rr2fy)) == pulp.lpSum([Trade.get(ci([*rr2fy[0:2], 

l, *rr2fy[2:4]])) for l in TIMESLICE]), "" 

        # 

        # for rfy in REGION_FUEL_YEAR: 

 

            # EBb4_EnergyBalanceEachYear4 

            # model += ProductionAnnual.get(ci(rfy)) >= UseAnnual.get(ci(rfy)) + 

pulp.lpSum([TradeAnnual.get(ci([rfy[0], rr, *rfy[1:3]])) * TradeRoute.get(ci([rfy[0], rr, 

*rfy[1:3]]), dflt.get('TradeRoute')) for rr in REGION2]) + 

AccumulatedAnnualDemand.get(ci(rfy), dflt.get('AccumulatedAnnualDemand')), "" 

            #model += ProductionAnnual.get(ci(rfy)) >= pulp.lpSum([Use.get(ci([rfy[0], l, 

*rfy[1:3]])) for l in TIMESLICE])+ pulp.lpSum([pulp.lpSum([Trade.get(ci([rfy[0], rr, l, 

*rfy[1:3]])) for l in TIMESLICE]) * TradeRoute.get(ci([rfy[0], rr, *rfy[1:3]]), 

dflt.get('TradeRoute')) for rr in REGION2]) + AccumulatedAnnualDemand.get(ci(rfy), 

dflt.get('AccumulatedAnnualDemand')), "" 

 

        # ====  Accounting Technology Production/Use  ==== 

 

        for rflty in REGION_FUEL_TIMESLICE_TECHNOLOGY_YEAR: 

            # Acc1_FuelProductionByTechnology 

            model += ProductionByTechnology.get(ci(rflty)) == 

pulp.lpSum([RateOfProductionByTechnologyByMode.get(ci([*rflty[0:3], m, *rflty[3:5]])) 
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for m in MODE_OF_OPERATION if OutputActivityRatio.get(ci([*rflty[0:2], m, 

*rflty[3:5]]), dflt.get('OutputActivityRatio')) != 0]) * YearSplit.get(ci([rflty[2], rflty[4]])), "" 

            # Acc2_FuelUseByTechnology 

            model += UseByTechnology.get(ci(rflty)) == 

RateOfUseByTechnology.get(ci(rflty)) * YearSplit.get(ci([rflty[2], rflty[4]])), "" 

        for rlty in REGION_TIMESLICE_TECHNOLOGY_YEAR: 

            # Acc1_FuelProductionByTechnology 

            model += ProductionFromTechnology.get(ci(rlty)) == 

pulp.lpSum([ProductionByTechnology.get(ci([*rlty[0:1], f, *rlty[1:4]])) for f in FUEL]) , "" 

 

        for rmty in REGION_MODE_OF_OPERATION_TECHNOLOGY_YEAR: 

            # Acc3_AverageAnnualRateOfActivity 

            model += TotalAnnualTechnologyActivityByMode.get(ci(rmty)) == 

pulp.lpSum([RateOfActivity.get(ci([rmty[0], l, *rmty[1:4]])) * YearSplit.get(ci([l, rmty[3]])) 

for l in TIMESLICE]), "" 

 

        for r in REGION: 

            # Acc4_ModelPeriodCostByRegion 

            model += ModelPeriodCostByRegion.get(r) == 

pulp.lpSum([TotalDiscountedCost.get(ci([r, y])) for y in YEAR]), "" 

 

    #      

    #   # ====  Storage Equations  ==== 

 

    #     for rldlhlssy in 

REGION_DAYTYPE_DAILYTIMEBRACKET_SEASON_STORAGE_YEAR: 

    #         # S1_RateOfStorageCharge 

    #         model += RateOfStorageCharge.get(ci(rldlhlssy)) == 

pulp.lpSum([RateOfActivity.get(ci([rldlhlssy[0], *lmt, rldlhlssy[5]])) * 
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TechnologyToStorage.get(ci([rldlhlssy[0],  *lmt[1:3], rldlhlssy[3]]), 

dflt.get('TechnologyToStorage')) * Conversionls.get(ci([lmt[0], rldlhlssy[3]]), 

dflt.get('Conversionls')) * Conversionld.get(ci([lmt[0], rldlhlssy[1]]), 

dflt.get('Conversionld')) * Conversionlh.get(ci([lmt[0], rldlhlssy[2]]), 

dflt.get('Conversionlh')) for lmt in 

TIMESLICE_MODE_OF_OPERATION_TECHNOLOGY if 

TechnologyToStorage.get(ci([rldlhlssy[0], lmt[1], rldlhlssy[4], lmt[2]]), 

dflt.get('TechnologyToStorage')) > 0]), "" 

    #         # S2_RateOfStorageDischarge 

    #         model += RateOfStorageDischarge.get(ci(rldlhlssy)) == 

pulp.lpSum([RateOfActivity.get(ci([rldlhlssy[0], *lmt, rldlhlssy[5]])) * 

TechnologyFromStorage.get(ci([rldlhlssy[0], *lmt[1:3], rldlhlssy[3]]), 

dflt.get('TechnologyFromStorage')) * Conversionls.get(ci([lmt[0], rldlhlssy[3]]), 

dflt.get('Conversionls')) * Conversionld.get(ci([lmt[0], rldlhlssy[1]]), 

dflt.get('Conversionld')) * Conversionlh.get(ci([lmt[0], rldlhlssy[2]]), 

dflt.get('Conversionlh')) for lmt in 

TIMESLICE_MODE_OF_OPERATION_TECHNOLOGY if 

TechnologyFromStorage.get(ci([rldlhlssy[0], lmt[1], rldlhlssy[4], lmt[2]]), 

dflt.get('TechnologyFromStorage')) > 0]), "" 

    #         # S3_NetChargeWithinYear 

    #         model += NetChargeWithinYear.get(ci(rldlhlssy)) == 

pulp.lpSum([(RateOfStorageCharge.get(ci(rldlhlssy)) - 

RateOfStorageDischarge.get(ci(rldlhlssy))) * YearSplit.get(ci([l, rldlhlssy[5]])) * 

Conversionls.get(ci([l, rldlhlssy[3]]), dflt.get('Conversionls')) * Conversionld.get(ci([l, 

rldlhlssy[1]]), dflt.get('Conversionld')) * Conversionlh.get(ci([l, rldlhlssy[2]]), 

dflt.get('Conversionlh')) for l in TIMESLICE if (Conversionls.get(ci([l, rldlhlssy[3]]), 

dflt.get('Conversionls')) > 0) and (Conversionld.get(ci([l, rldlhlssy[1]]), 

dflt.get('Conversionld')) > 0) and (Conversionlh.get(ci([l, rldlhlssy[2]]), 

dflt.get('Conversionlh')) > 0)]), "" 

    #         # S4_NetChargeWithinDay 

    #         model += NetChargeWithinDay.get(ci(rldlhlssy)) == 

(RateOfStorageCharge.get(ci(rldlhlssy)) - RateOfStorageDischarge.get(ci(rldlhlssy))) 

* DaySplit.get(ci([rldlhlssy[2], rldlhlssy[5]]), dflt.get('DaySplit')), "" 

 

    #     for rsy in REGION_STORAGE_YEAR: 

    #         # S5_and_S6_StorageLevelYearStart 

    #         if int(rsy[2]) == int(min(YEAR)): 
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    #             model += StorageLevelYearStart.get(ci(rsy)) == 

StorageLevelStart.get(ci(rsy[0:2]), dflt.get('StorageLevelStart')), "" 

    #         else: 

    #             model += StorageLevelYearStart.get(ci(rsy)) == 

StorageLevelYearStart.get(ci([*rsy[0:2], str(int(rsy[2])-1)])) + 

pulp.lpSum([NetChargeWithinYear.get(ci([*rsy[0:2], *ldlhls, str(int(rsy[2])-1)])) for ldlhls 

in DAYTYPE_DAILYTIMEBRACKET_SEASON]), "" 

    #         # S7_and_S8_StorageLevelYearFinish 

    #         if int(rsy[2]) < int(max(YEAR)): 

    #             model += StorageLevelYearFinish.get(ci(rsy)) == 

StorageLevelYearStart.get(ci([*rsy[0:2], str(int(rsy[2])-1)])), "" 

    #         else: 

    #             model += StorageLevelYearFinish.get(ci(rsy)) == 

StorageLevelYearStart.get(ci(rsy)) + 

pulp.lpSum([NetChargeWithinYear.get(ci([*rsy[0:2], *ldlhls, rsy[2]])) for ldlhls in 

DAYTYPE_DAILYTIMEBRACKET_SEASON]), "" 

 

    #     for rlssy in REGION_SEASON_STORAGE_YEAR: 

    #         # S9_and_S10_StorageLevelSeasonStart 

    #         if int(rlssy[1]) == int(min(SEASON)): 

    #             model += StorageLevelSeasonStart.get(ci(rlssy)) == 

StorageLevelYearStart.get(ci([rlssy[0], *rlssy[2:4]])), "" 

    #         else: 

    #             model += StorageLevelSeasonStart.get(ci(rlssy)) == 

StorageLevelSeasonStart.get(ci([rlssy[0], str(int(rlssy[1])-1), *rlssy[2:4]])) + 

pulp.lpSum([NetChargeWithinYear.get(ci([rlssy[0], str(int(rlssy[1])-1), *ldlh, 

*rlssy[2:4]])) for ldlh in DAYTYPE_DAILYTIMEBRACKET]), "" 

 

    #     for rldlssy in REGION_DAYTYPE_SEASON_STORAGE_YEAR: 

    #         # S11_and_S12_StorageLevelDayTypeStart 
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    #         if int(rldlssy[1]) == int(min(DAYTYPE)): 

    #             model += StorageLevelDayTypeStart.get(ci(rldlssy)) == 

StorageLevelSeasonStart.get(ci([rldlssy[0], *rldlssy[2:5]])), "" 

    #         else: 

    #             model += StorageLevelDayTypeStart.get(ci(rldlssy)) == 

StorageLevelDayTypeStart.get(ci([rldlssy[0], str(int(rldlssy[1])-1), *rldlssy[2:5]])) + 

pulp.lpSum([NetChargeWithinDay.get(ci([rldlssy[0], str(int(rldlssy[1])-1), lh, 

rldlssy[2:5]])) * DaysInDayType.get(ci([rldlssy[2], str(int(rldlssy[1])-1), rldlssy[4]]), 

dflt.get('DaysInDayType')) for lh in DAILYTIMEBRACKET]), "" 

    #         # S13_and_S14_and_S15_StorageLevelDayTypeFinish 

    #         if (int(rldlssy[1]) == int(max(DAYTYPE))) and (int(rldlssy[2]) == 

int(max(SEASON))): 

    #             model += StorageLevelDayTypeFinish.get(ci(rldlssy)) == 

StorageLevelYearFinish.get(ci([rldlssy[0], *rldlssy[3:5]])), "" 

    #         elif int(rldlssy[1]) == int(max(DAYTYPE)): 

    #             model += StorageLevelDayTypeFinish.get(ci(rldlssy)) == 

StorageLevelSeasonStart.get(ci([rldlssy[0], str(int(rldlssy[2])+1), *rldlssy[3:5]])), "" 

    #         else: 

    #             model += StorageLevelDayTypeFinish.get(ci(rldlssy)) == 

StorageLevelDayTypeFinish.get(ci([rldlssy[0], rldlssy[2], str(int(rldlssy[1])+1), 

*rldlssy[3:5]])) - pulp.lpSum([NetChargeWithinDay.get(ci([rldlssy[0], str(int(rldlssy[1])-

1), lh, rldlssy[2:5]])) * DaysInDayType.get(ci([rldlssy[2], str(int(rldlssy[1])-1), rldlssy[4]]), 

dflt.get('DaysInDayType')) for lh in DAILYTIMEBRACKET]), "" 

 

    #                      ====  Storage Constraints  ==== 

    #     for rldlhlssy in 

REGION_DAYTYPE_DAILYTIMEBRACKET_SEASON_STORAGE_YEAR: 

    #         # 

SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWe

ekConstraint 

    #         model += (StorageLevelDayTypeStart.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

+ pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 
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in DAILYTIMEBRACKET if int(rldlhlssy[2])-int(lhlh) > 0])) - 

StorageLowerLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) >= 0, "" 

    #         # 

SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWe

ekConstraint 

    #         model += (StorageLevelDayTypeStart.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

+ pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 

in DAILYTIMEBRACKET if int(rldlhlssy[2])-int(lhlh) > 0])) - 

StorageUpperLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) <= 0, "" 

    #         # 

SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeekCon

straint 

    #         if int(rldlhlssy[1]) > int(min(DAYTYPE)): 

    #             model += (StorageLevelDayTypeStart.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

- pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, str(int(rldlhlssy[3])-1), 

*rldlhlssy[4:6]])) for lhlh in DAILYTIMEBRACKET if int(rldlhlssy[2])-int(lhlh) < 0])) - 

StorageLowerLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) >= 0, "" 

    #         # 

SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeekCon

straint 

    #         if int(rldlhlssy[1]) > int(min(DAYTYPE)): 

    #             model += (StorageLevelDayTypeStart.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

- pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, str(int(rldlhlssy[3])-1), 

*rldlhlssy[4:6]])) for lhlh in DAILYTIMEBRACKET if int(rldlhlssy[2]) - int(lhlh) < 0])) - 

StorageUpperLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) <= 0, "" 

    #         # 

SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeekCon

straint 

    #         model += (StorageLevelDayTypeFinish.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

- pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 

in DAILYTIMEBRACKET if int(rldlhlssy[2]) - int(lhlh) < 0])) - 

StorageLowerLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) >= 0, "" 

    #         # 

SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeekCon

straint 
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    #         model += (StorageLevelDayTypeFinish.get(ci([*rldlhlssy[0:2], *rldlhlssy[3:6]])) 

- pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 

in DAILYTIMEBRACKET if int(rldlhlssy[2]) - int(lhlh) < 0])) - 

StorageUpperLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) <= 0, "" 

    #         # 

SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWe

ekConstraint 

    #         if int(rldlhlssy[1]) > int(min(DAYTYPE)): 

    #             model += (StorageLevelDayTypeFinish.get(ci([rldlhlssy[0], 

str(int(rldlhlssy[1])-1), *rldlhlssy[3:6]])) + 

pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 

in DAILYTIMEBRACKET if int(rldlhlssy[2]) - int(lhlh) > 0])) - 

StorageLowerLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) >= 0, "" 

    #         # 

SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWe

ekConstraint 

    #         if int(rldlhlssy[1]) > int(min(DAYTYPE)): 

    #             model += (StorageLevelDayTypeFinish.get(ci([rldlhlssy[0], 

str(int(rldlhlssy[1])-1), *rldlhlssy[3:6]])) + 

pulp.lpSum([NetChargeWithinDay.get(ci([*rldlhlssy[0:2], lhlh, *rldlhlssy[3:6]])) for lhlh 

in DAILYTIMEBRACKET if int(rldlhlssy[2]) - int(lhlh) > 0])) - 

StorageUpperLimit.get(ci([rldlhlssy[0], *rldlhlssy[4:6]])) <= 0, "" 

 

    #         # SC5_MaxChargeConstraint 

    #         model += RateOfStorageCharge.get(ci(rldlhlssy)) <= 

StorageMaxChargeRate.get(ci(rldlhlssy[4:6]), dflt.get('StorageMaxChargeRate')), "" 

    #         # SC6_MaxDischargeConstraint 

    #         model += RateOfStorageDischarge.get(ci(rldlhlssy)) <= 

StorageMaxDischargeRate.get(ci(rldlhlssy[4:6]), 

dflt.get('StorageMaxDischargeRate')), "" 

 

        # ====  Storage equations for Thermal storage -  ==== 
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        for rsy in REGION_STORAGE_YEAR: 

            if(StorageL2D.get(ci(rsy[0:2]), dflt.get('StorageL2D')) == 0): 

                 model += StorageSurfaceArea.get(ci(rsy)) == 0.0744 * 

AccumulatedNewStorageCapacity.get(ci(rsy)) * Storagetagheating.get(ci(rsy[0:2]), 

dflt.get('Storagetagheating')) + 0.0361 * AccumulatedNewStorageCapacity.get(ci(rsy)) 

* Storagetagcooling.get(ci(rsy[0:2]), dflt.get('Storagetagcooling')), ""   

            elif(StorageL2D.get(ci(rsy[0:2]), dflt.get('StorageL2D')) == 1): 

                 model += StorageSurfaceArea.get(ci(rsy)) == 0.1339 * 

AccumulatedNewStorageCapacity.get(ci(rsy)) * Storagetagheating.get(ci(rsy[0:2]), 

dflt.get('Storagetagheating')) + 0.065 * AccumulatedNewStorageCapacity.get(ci(rsy)) * 

Storagetagcooling.get(ci(rsy[0:2]), dflt.get('Storagetagcooling')), "" 

 

        #SL1_Storage_losses_thermal_storage 

           # if(StorageL2D.get(ci(rsy[0:2]), dflt.get('StorageL2D')) == 0): 

            #    model += StorageSurfaceArea.get(ci(rsy)) == 0.0361 * 

AccumulatedNewStorageCapacity.get(ci(rsy)) * Storagetagcooling.get(ci(rsly[0:2]), 

dflt.get('Storagetagcooling'))) ,"", ""   

          #  elif(StorageL2D.get(ci(rsy[0:2]), dflt.get('StorageL2D')) == 1): 

           #      model += StorageSurfaceArea.get(ci(rsy)) == 0.065 * 

AccumulatedNewStorageCapacity.get(ci(rsy)) * Storagetagcooling.get(ci(rsly[0:2]), 

dflt.get('Storagetagcooling'))) ,"", "" 

 

 

        for rsly in REGION_STORAGE_TIMESLICE_YEAR: 

            #SL1_Storage_losses 

            #if (StorageL2D.get(ci([*rsly[0:2], rsly[3]]), dflt.get('StorageL2D')) == 0): 

                #model += StorageLosses.get(ci([*rsy[0:2], str(int(rsy[2])-1)])) ==  1.5374  * 

(8.76 / int(max(TIMESLICE))) * 0.0036 * (StorageUvalue.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageUvalue'))) * ((((StorageFlowTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageFlowTemperature'))) - (StorageReturnTemperature.get(ci([*rsly[0:2], 

rsly[3]]), dflt.get('StorageReturnTemperature')))) * 

StorageLevelTimesliceStart.get(ci(rsly))) + 
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(((StorageReturnTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageReturnTemperature'))) - 

(StorageAmbientTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageAmbientTemperature')))) * StorageUpperLimit.get(ci([*rsly[0:2], 

rsly[3]]))))  , "" 

 

            model += StorageLossesheating.get(ci(rsly)) == 

(StorageSurfaceArea.get(ci([*rsly[0:2], rsly[3]])) * 0.0036 * (8760 / 

int(max(TIMESLICE))) * (StorageUvalue.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageUvalue'))) * ((((StorageFlowTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageFlowTemperature'))) + (StorageReturnTemperature.get(ci([*rsly[0:2], 

rsly[3]]), dflt.get('StorageReturnTemperature')))) / 2) - 

(StorageAmbientTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageAmbientTemperature')))) / 1000 * Storagetagheating.get(ci(rsly[0:2]), 

dflt.get('Storagetagheating'))) ,""  

 

 

            model += StorageLossescooling.get(ci(rsly)) == 

(StorageSurfaceArea.get(ci([*rsly[0:2], rsly[3]])) * 0.0036 * (8760 / 

int(max(TIMESLICE))) * (StorageUvalue.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageUvalue'))) * ((StorageAmbientTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageAmbientTemperature'))) - 

(((StorageFlowTemperature.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageFlowTemperature'))) + (StorageReturnTemperature.get(ci([*rsly[0:2], 

rsly[3]]), dflt.get('StorageReturnTemperature')))) / 2)) / 1000 * 

Storagetagcooling.get(ci(rsly[0:2]), dflt.get('Storagetagcooling'))) ,""        

 

 

            model += StorageLosses.get(ci(rsly)) ==  StorageLossesheating.get(ci(rsly)) + 

StorageLossescooling.get(ci(rsly)), ""       

 

        for rsy in REGION_STORAGE_YEAR: 

         #S5_and_S6_StorageLevelYearStart 

            if int(rsy[2]) == int(min(YEAR)): 



This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N°847121 

The EMB3RS Techno-Economic Optimization Module   

 

97 

                model += StorageLevelYearStart.get(ci(rsy)) == 

StorageLevelStart.get(ci(rsy[0:2]), dflt.get('StorageLevelStart')), "" 

            else: 

                model += StorageLevelYearStart.get(ci(rsy)) == 

StorageLevelYearStart.get(ci([*rsy[0:2], str(int(rsy[2])-1)])) + 

pulp.lpSum([((RateOfStorageCharge.get(ci([*rsy[0:2], l, str(int(rsy[2])-1)])) - 

RateOfStorageDischarge.get(ci([*rsy[0:2], l, str(int(rsy[2])-1)]))) * YearSplit.get(ci([l, 

str(int(rsy[2])-1)]))) for l in TIMESLICE]), "" 

 

        for rsly in REGION_STORAGE_TIMESLICE_YEAR: 

            # S1_RateOfStorageCharge 

             model += RateOfStorageCharge.get(ci(rsly)) == 

pulp.lpSum([RateOfActivity.get(ci([rsly[0], rsly[2], *mt, rsly[3]])) * 

TechnologyToStorage.get(ci([*rsly[0:2], *mt]), dflt.get('TechnologyToStorage'))  for mt 

in MODE_OF_OPERATION_TECHNOLOGY if 

TechnologyToStorage.get(ci(([*rsly[0:2],*mt])), dflt.get('TechnologyToStorage')) > 0]), 

"" 

            # S2_RateOfStorageDischarge 

             model += RateOfStorageDischarge.get(ci(rsly)) == 

pulp.lpSum([RateOfActivity.get(ci([rsly[0], rsly[2], *mt, rsly[3]])) * 

TechnologyFromStorage.get(ci([*rsly[0:2], *mt]), dflt.get('TechnologyFromStorage')) 

for mt in MODE_OF_OPERATION_TECHNOLOGY if 

TechnologyFromStorage.get(ci([*rsly[0:2], *mt]), dflt.get('TechnologyFromStorage')) > 

0]), "" 

 

        for rsly in REGION_STORAGE_TIMESLICE_YEAR: 

            #S1_and_S2_StorageLevelTimesliceStart   

            if int(rsly[2]) == int(min(TIMESLICE)): 

                model += StorageLevelTimesliceStart.get(ci(rsly)) == 

StorageLevelYearStart.get(ci([*rsly[0:2], rsly[3]])), "" 

            else: 

                model += StorageLevelTimesliceStart.get(ci(rsly)) == 

StorageLevelTimesliceStart.get(ci([*rsly[0:2], str(int(rsly[2])-1), rsly[3]])) - 
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StorageLosses.get(ci([*rsly[0:2], str(int(rsly[2])-1), rsly[3]]))  + 

((RateOfStorageCharge.get(ci([*rsly[0:2], str(int(rsly[2])-1), rsly[3]])) - 

RateOfStorageDischarge.get(ci([*rsly[0:2], str(int(rsly[2])-1), rsly[3]]))) * 

YearSplit.get(ci([str(int(rsly[2])-1), rsly[3]]))), "" 

 

        for rs in REGION_STORAGE: 

            #SC8_StorageRefilling  

            model += 0 == pulp.lpSum([RateOfActivity.get(ci([rs[0], *lmty])) * 

TechnologyToStorage.get(ci([*rs[0:2], *lmty[1:3]]), dflt.get('TechnologyToStorage')) * 

YearSplit.get(ci([lmty[0], lmty[3]])) for lmty in 

TIMESLICE_MODE_OF_OPERATION_TECHNOLOGY_YEAR if 

TechnologyToStorage.get(ci(([*rs[0:2], *lmty[1:3]])), dflt.get('TechnologyToStorage')) > 

0]) - pulp.lpSum([RateOfActivity.get(ci([rs[0], *lmty])) * 

TechnologyFromStorage.get(ci([*rs[0:2], *lmty[1:3]]), 

dflt.get('TechnologyFromStorage')) * YearSplit.get(ci([lmty[0], lmty[3]])) for lmty in 

TIMESLICE_MODE_OF_OPERATION_TECHNOLOGY_YEAR if 

TechnologyFromStorage.get(ci([*rs[0:2], *lmty[1:3]]), 

dflt.get('TechnologyFromStorage')) > 0]) , "" 

 

        #===== Storage Constraints ==== 

 

        for rsy in REGION_STORAGE_YEAR: 

        # SI3_TotalNewStorage 

            model += AccumulatedNewStorageCapacity.get(ci(rsy)) ==  

pulp.lpSum([NewStorageCapacity.get(ci([*rsy[0:2], yy])) for yy in YEAR if 

(float(int(rsy[2]) - int(yy)) < float(OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage')))) and (int(rsy[2])-int(yy) >= 0)]), "" 

 

        # SI1_StorageUpperLimit 

            model += StorageUpperLimit.get(ci(rsy)) == 

(AccumulatedNewStorageCapacity.get(ci(rsy)) + 

ResidualStorageCapacity.get(ci(rsy), dflt.get('ResidualStorageCapacity'))), "" 
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        # SI1_StorageMaxCapacity 

            model += StorageUpperLimit.get(ci(rsy)) <= 

StorageMaxCapacity.get(ci(rsy[0:2]), dflt.get('StorageMaxCapacity')), "" 

 

        for rsly in REGION_STORAGE_TIMESLICE_YEAR: 

            #SC1_LowerLimit 

            model += StorageLevelTimesliceStart.get(ci(rsly)) >= 

MinStorageCharge.get(ci([*rsly[0:2], rsly[3]]), dflt.get('MinStorageCharge')) * 

StorageUpperLimit.get(ci([*rsly[0:2], rsly[3]])), "" 

 

            #SC2_Upper_Limit 

            model += StorageLevelTimesliceStart.get(ci(rsly)) <= 

StorageUpperLimit.get(ci([*rsly[0:2], rsly[3]])), ""  

 

            #SC3_Charging_Upper_Limit 

            #model += StorageMaxChargeRate.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageMaxChargeRate')) >= StorageLevelTimesliceStart.get(ci(rsly)) - 

StorageLevelTimesliceStart.get(ci([*rsly[0:2], str(int(rsly[2])-1), rsly[3]])), "" 

 

            #SC4_Charging_Lower_Limit 

            #model += StorageMaxDischargeRate.get(ci([*rsly[0:2], rsly[3]]), 

dflt.get('StorageMaxDischargeRate')) >= StorageLevelTimesliceStart.get(ci([*rsly[0:2], 

str(int(rsly[2])-1), rsly[3]])) - StorageLevelTimesliceStart.get(ci(rsly)), "" 

 

        # ====  Storage Investments  ====    

 

        # SI4_UndiscountedCapitalInvestmentStorage 

        for rsy in REGION_STORAGE_YEAR:  
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            model += CapitalInvestmentStorage.get(ci(rsy)) == 

CapitalCostStorage.get(ci(rsy), dflt.get('CapitalCostStorage')) * 

NewStorageCapacity.get(ci(rsy)), "" 

            # SI5_DiscountingCapitalInvestmentStorage 

            model += DiscountedCapitalInvestmentStorage.get(ci(rsy)) == 

CapitalInvestmentStorage.get(ci(rsy)) * (1/ ((1+DiscountRateSto.get(ci(rsy[0:2]), 

dflt.get('DiscountRateSto')))**(int(rsy[2]) - int(min(YEAR))))), "" 

            # SI6_SalvageValueStorageAtEndOfPeriod1 

            if float(int(rsy[2]) + OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage'))) - 1 <= float(max(YEAR)): 

                model += SalvageValueStorage.get(ci(rsy)) == 0, "" 

            # SI7_SalvageValueStorageAtEndOfPeriod2 

            if ((DepreciationMethod.get(rsy[0], dflt.get('DepreciationMethod')) == 1) and 

(float(int(rsy[2])+OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage'))-1) > float(max(YEAR))) and 

(DiscountRateSto.get(ci(rsy[0:2]), dflt.get('DiscountRateSto')) == 0)) or 

((DepreciationMethod.get(rsy[0], dflt.get('DepreciationMethod')) == 2) and 

(float(int(rsy[2])+OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage'))-1) > float(max(YEAR)))): 

                model += SalvageValueStorage.get(ci(rsy)) == 

CapitalInvestmentStorage.get(ci(rsy)) * (1-(int(max(YEAR))-

int(rsy[2])+1))/OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage')), "" 

            # SI8_SalvageValueStorageAtEndOfPeriod3 

            if (DepreciationMethod.get(rsy[0], dflt.get('DepreciationMethod')) == 1) and 

(float(int(rsy[2])+OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage'))-1) > float(max(YEAR))) and 

(DiscountRateSto.get(ci(rsy[0:2]), dflt.get('DiscountRateSto')) > 0): 

                model += SalvageValueStorage.get(ci(rsy)) == 

CapitalInvestmentStorage.get(ci(rsy)) * (1-(((1+DiscountRateSto.get(ci(rsy[0:2]), 

dflt.get('DiscountRateSto')))**(int(max(YEAR)) - int(rsy[2])+1)-

1)/((1+DiscountRateSto.get(ci(rsy[0:2]), 

dflt.get('DiscountRateSto')))**OperationalLifeStorage.get(ci(rsy[0:2]), 

dflt.get('OperationalLifeStorage'))-1))), "" 

            # SI9_SalvageValueStorageDiscountedToStartYear 
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            model += DiscountedSalvageValueStorage.get(ci(rsy)) == 

SalvageValueStorage.get(ci(rsy)) * (1 /((1+DiscountRateSto.get(ci(rsy[0:2]), 

dflt.get('DiscountRateSto')))**(int(max(YEAR))-int(min(YEAR))+1))), "" 

            # SI10_TotalDiscountedCostByStorage 

            model += TotalDiscountedStorageCost.get(ci(rsy)) == 

DiscountedCapitalInvestmentStorage.get(ci(rsy))-

DiscountedSalvageValueStorage.get(ci(rsy)), "" 

 

 

 

        # ====  Capital Costs  ==== 

 

        for rty in REGION_TECHNOLOGY_YEAR: 

            # CC1_UndiscountedCapitalInvestment 

            model += CapitalInvestment.get(ci(rty)) == CapitalCost.get(ci(rty), 

dflt.get('CapitalCost')) * NewCapacity.get(ci(rty)),  "" 

            # CC2_DiscountingCapitalInvestment 

            model += DiscountedCapitalInvestment.get(ci(rty)) == 

CapitalInvestment.get(ci(rty)) * (1/((1 + DiscountRateTech.get(ci(rty[0:2]), 

dflt.get('DiscountRateTech'))) ** (int(rty[2]) - int(min(YEAR))))), "" 

 

        # ====  Business module Discounted Costs for storage and Technology  ====    

        # ====   Storage  ====    

        for rs in REGION_STORAGE:  

    #        # SI9.1_SalvageValuebyStorage 

             model += DiscountedSalvageValueByStorage.get(ci(rs)) ==  

pulp.lpSum([DiscountedSalvageValueStorage.get(ci([*rs, y])) for y in YEAR]), "" 

    #         # SI5.1_DiscountingCapitalInvestmentbyStorageBusinessModule 
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             model += DiscountedCapitalInvestmentByStorage.get(ci(rs)) ==  

pulp.lpSum([DiscountedCapitalInvestmentStorage.get(ci([*rs, y])) for y in YEAR]), "" 

 

 

        for rty in REGION_TECHNOLOGY_YEAR: 

        # ====  Salvage Value  ==== 

            # SV1_SalvageValueAtEndOfPeriod1 

            if (DepreciationMethod.get(rty[0], dflt.get('DepreciationMethod')) == 1) and 

(float(int(rty[2]) + OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife'))) - 1 > 

float(max(YEAR))) and (DiscountRateTech.get(ci(rty[0:2]), 

dflt.get('DiscountRateTech')) > 0): 

                model += SalvageValue.get(ci(rty)) == CapitalCost.get(ci(rty), 

dflt.get('CapitalCost')) * NewCapacity.get(ci(rty)) * (1 - (((1 +  

DiscountRateTech.get(ci(rty[0:2]), dflt.get('DiscountRateTech'))) ** (int(max(YEAR)) - 

int(rty[2]) + 1) - 1) / ((1 +  DiscountRateTech.get(ci(rty[0:2]), 

dflt.get('DiscountRateTech'))) ** OperationalLife.get(ci(rty[0:2]), 

dflt.get('OperationalLife')) - 1))), "" 

            # SV2_SalvageValueAtEndOfPeriod2 

            if ((DepreciationMethod.get(rty[0], dflt.get('DepreciationMethod')) == 1) and 

(float(int(rty[2]) + OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife'))) - 1 > 

float(max(YEAR))) and ( DiscountRateTech.get(ci(rty[0:2]), 

dflt.get('DiscountRateTech')) == 0)) or ((DepreciationMethod.get(rty[0], 

dflt.get('DepreciationMethod')) == 2) and (float(int(rty[2]) + 

OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife'))) - 1 > float(max(YEAR)))): 

                model += SalvageValue.get(ci(rty)) == CapitalCost.get(ci(rty), 

dflt.get('CapitalCost')) * NewCapacity.get(ci(rty)) * (1 - (int(max(YEAR)) - int(rty[2]) + 1) 

/ OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife'))), "" 

            # SV3_SalvageValueAtEndOfPeriod3) 

            if float(int(rty[2]) + OperationalLife.get(ci(rty[0:2]), dflt.get('OperationalLife')) - 1) 

<= float(max(YEAR)): 

                model += SalvageValue.get(ci(rty)) == 0, "" 

            # SV4_SalvageValueDiscountedToStartYear 
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            model += DiscountedSalvageValue.get(ci(rty)) == SalvageValue.get(ci(rty)) * 

(1 / ((1 +  DiscountRateTech.get(ci(rty[0:2]), dflt.get('DiscountRateTech'))) ** (1 + 

int(max(YEAR)) - int(min(YEAR))))), "" 

 

            # ====  Operating Costs  ==== 

 

            # OC1_OperatingCostsVariable 

            model += AnnualVariableOperatingCost.get(ci(rty)) == 

pulp.lpSum([TotalAnnualTechnologyActivityByMode.get(ci([rty[0], m, *rty[1:3]])) * 

VariableCost.get(ci([rty[0], m, *rty[1:3]]), dflt.get('VariableCost')) for m in 

MODE_OF_OPERATION]), "" 

            # OC2_OperatingCostsFixedAnnual 

            model += AnnualFixedOperatingCost.get(ci(rty)) == 

TotalCapacityAnnual.get(ci(rty)) * FixedCost.get(ci(rty), dflt.get('FixedCost')), "" 

            # OC3_OperatingCostsTotalAnnual 

            model += OperatingCost.get(ci(rty)) == AnnualFixedOperatingCost.get(ci(rty)) 

+ AnnualVariableOperatingCost.get(ci(rty)), "" 

            # OC4_DiscountedOperatingCostsTotalAnnual 

            model += DiscountedOperatingCost.get(ci(rty)) == OperatingCost.get(ci(rty)) * 

(1 / ((1 +  DiscountRateTech.get(ci(rty[0:2]), dflt.get('DiscountRateTech'))) ** (int(rty[2]) 

- int(min(YEAR)) + 0.5))), "" 

 

        # ====  Business module Discounted Costs for storage and Technology  ====  

        # ====  Technology  ====    

        for rt in REGION_TECHNOLOGY: 

    #         # CC2.1_DiscountingCapitalInvestmentbytechnology 

             model += DiscountedCapitalInvestmentByTechnology.get(ci(rt)) ==  

pulp.lpSum([DiscountedCapitalInvestment.get(ci([*rt, y])) for y in YEAR]), "" 

    #         # OC4.1_DiscountedOperatingCostsbytechnologyBusinessModule 
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             model += DiscountedOperatingCostByTechnology.get(ci(rt)) ==  

pulp.lpSum([DiscountedOperatingCost.get(ci([*rt, y])) for y in YEAR]), ""    

    #         # SV4.1_DiscountedSalvageValuebytechnologyBusinessModule 

             model += DiscountedSalvageValueByTechnology.get(ci(rt)) ==  

pulp.lpSum([DiscountedSalvageValue.get(ci([*rt, y])) for y in YEAR]), ""     

 

        # ====  Total Discounted Costs  ==== 

 

        for ry in REGION_YEAR: 

            # TDC2_TotalDiscountedCost 

            model += TotalDiscountedCost.get(ci(ry)) == 

pulp.lpSum([TotalDiscountedCostByTechnology.get(ci([ry[0], t, ry[1]])) for t in 

TECHNOLOGY]) + pulp.lpSum([TotalDiscountedStorageCost.get(ci([ry[0], s, ry[1]])) 

for s in STORAGE]), "" 

 

        for rty in REGION_TECHNOLOGY_YEAR: 

            # TDC1_TotalDiscountedCostByTechnology 

            model += TotalDiscountedCostByTechnology.get(ci(rty)) == 

DiscountedOperatingCost.get(ci(rty)) + DiscountedCapitalInvestment.get(ci(rty)) + 

DiscountedTechnologyEmissionsPenalty.get(ci(rty)) - 

DiscountedSalvageValue.get(ci(rty)), "" 

 

        # ====  Total Capacity Constraints  ==== 

 

            # TCC1_TotalAnnualMaxCapacityConstraint 

            model += TotalCapacityAnnual.get(ci(rty)) <= 

TotalAnnualMaxCapacity.get(ci(rty), dflt.get('TotalAnnualMaxCapacity')), "" 

            # TCC2_TotalAnnualMinCapacityConstraint 

            if TotalAnnualMinCapacity.get(ci(rty), dflt.get('TotalAnnualMinCapacity')) > 0: 
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                model += TotalCapacityAnnual.get(ci(rty)) >= 

TotalAnnualMinCapacity.get(ci(rty), dflt.get('TotalAnnualMaxCapacity')), "" 

 

        # ====  New Capacity Constraints  ==== 

 

            # NCC1_TotalAnnualMaxNewCapacityConstraint 

            model += NewCapacity.get(ci(rty)) <= 

TotalAnnualMaxCapacityInvestment.get(ci(rty), 

dflt.get('TotalAnnualMaxCapacityInvestment')), "" 

            # NCC2_TotalAnnualMinNewCapacityConstraint 

            if TotalAnnualMinCapacityInvestment.get(ci(rty), 

dflt.get('TotalAnnualMinCapacityInvestment')) > 0: 

                model += NewCapacity.get(ci(rty)) >= 

TotalAnnualMinCapacityInvestment.get(ci(rty), 

dflt.get('TotalAnnualMinCapacityInvestment')), "" 

 

        # ====  Annual Activity Constraints  ==== 

 

            # AAC1_TotalAnnualTechnologyActivity 

            model += TotalTechnologyAnnualActivity.get(ci(rty)) == 

pulp.lpSum([RateOfTotalActivity.get(ci([rty[0], l, *rty[1:3]])) * YearSplit.get(ci([l, rty[2]])) 

for l in TIMESLICE]), "" 

            # AAC2_TotalAnnualTechnologyActivityUpperLimit 

            model += TotalTechnologyAnnualActivity.get(ci(rty)) <= 

TotalTechnologyAnnualActivityUpperLimit.get(ci(rty), 

dflt.get('TotalTechnologyAnnualActivityUpperLimit')), "" 

            # AAC3_TotalAnnualTechnologyActivityLowerLimit 

            if TotalTechnologyAnnualActivityLowerLimit.get(ci(rty), 

dflt.get('TotalTechnologyAnnualActivityLowerLimit')) > 0: 
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                model += TotalTechnologyAnnualActivity.get(ci(rty)) >= 

TotalTechnologyAnnualActivityLowerLimit.get(ci(rty), 

dflt.get('TotalTechnologyAnnualActivityLowerLimit')), "" 

 

        # ====  Total Activity Constraints  ==== 

 

        for rt in REGION_TECHNOLOGY: 

            # TAC1_TotalModelHorizonTechnologyActivity 

            model += TotalTechnologyModelPeriodActivity.get(ci(rt)) == 

pulp.lpSum([TotalTechnologyAnnualActivity.get(ci([*rt, y])) for y in YEAR]), "" 

            # TAC2_TotalModelHorizonTechnologyActivityUpperLimit 

            if TotalTechnologyModelPeriodActivityUpperLimit.get(ci(rt), 

dflt.get('TotalTechnologyModelPeriodActivityUpperLimit')) > 0: 

                model += TotalTechnologyModelPeriodActivity.get(ci(rt)) <= 

TotalTechnologyModelPeriodActivityUpperLimit.get(ci(rt), 

dflt.get('TotalTechnologyModelPeriodActivityUpperLimit')), "" 

            # TAC3_TotalModelHorizenTechnologyActivityLowerLimit 

            if TotalTechnologyModelPeriodActivityLowerLimit.get(ci(rt), 

dflt.get('TotalTechnologyModelPeriodActivityLowerLimit')) > 0: 

                model += TotalTechnologyModelPeriodActivity.get(ci(rt)) >= 

TotalTechnologyModelPeriodActivityLowerLimit.get(ci(rt), 

dflt.get('TotalTechnologyModelPeriodActivityLowerLimit')), "" 

 

        # ====  Reserve Margin Constraint  ==== 

 

        for ry in REGION_YEAR: 

            # RM1_ReserveMargin_TechnologiesIncluded_In_Activity_Units 

            model += TotalCapacityInReserveMargin.get(ci(ry)) == 

pulp.lpSum([TotalCapacityAnnual.get(ci([ry[0], t, ry[1]])) * 

ReserveMarginTagTechnology.get(ci([ry[0], t, ry[1]]), 
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dflt.get('ReserveMarginTagTechnology')) * CapacityToActivityUnit.get(ci([ry[0], t]), 

dflt.get('CapacityToActivityUnit')) for t in TECHNOLOGY]), "" 

 

        for rly in REGION_TIMESLICE_YEAR: 

            # RM2_ReserveMargin_FuelsIncluded 

            model += DemandNeedingReserveMargin.get(ci(rly)) == 

pulp.lpSum([RateOfProduction.get(ci([rly[0], f, *rly[1:3]])) * 

ReserveMarginTagFuel.get(ci([rly[0], f, rly[2]]), dflt.get('ReserveMarginTagFuel')) for f 

in FUEL]), "" 

            # RM3_ReserveMargin_Constraint 

            model += DemandNeedingReserveMargin.get(ci(rly)) <= 

TotalCapacityInReserveMargin.get(ci([rly[0], rly[2]])) * (1/ReserveMargin.get(ci([rly[0], 

rly[2]]), dflt.get('ReserveMargin'))), "" 

 

        # ====  RE Production Target  ==== 

 

        for rfty in REGION_FUEL_TECHNOLOGY_YEAR: 

            # RE1_FuelProductionByTechnologyAnnual 

            model += ProductionByTechnologyAnnual.get(ci(rfty)) == 

pulp.lpSum([ProductionByTechnology.get(ci([rfty[0], l, *rfty[1:4]])) for l in TIMESLICE]), 

"" 

 

        for ry in REGION_YEAR: 

            # RE2_TechIncluded 

            # model += TotalREProductionAnnual.get(ci(ry)) == 

pulp.lpSum([ProductionByTechnologyAnnual.get(ci([ry[0], *ft, ry[1]])) * 

RETagTechnology.get(ci([ry[0], ft[1], ry[1]]), dflt.get('RETagTechnology')) for ft in 

FUEL_TECHNOLOGY]), "" 

 

            # RE3_FuelIncluded 
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            model += RETotalProductionOfTargetFuelAnnual.get(ci(ry)) == 

pulp.lpSum([RateOfProduction.get(ci([ry[0], *fl, ry[1]])) * YearSplit.get(ci([fl[1], ry[1]])) * 

RETagFuel.get(ci([ry[0], fl[0], ry[1]]), dflt.get('RETagFuel')) for fl in 

FUEL_TIMESLICE]), "" 

            # RE4_EnergyConstraint 

            # model += TotalREProductionAnnual.get(ci(ry)) >= 

REMinProductionTarget.get(ci(ry), dflt.get('REMinProductionTarget')) * 

RETotalProductionOfTargetFuelAnnual.get(ci(ry)), "" 

 

            # Combined: RE4_EnergyConstraint >= RE2_TechIncluded 

            model += pulp.lpSum([ProductionByTechnologyAnnual.get(ci([ry[0], *ft, ry[1]])) 

* RETagTechnology.get(ci([ry[0], ft[1], ry[1]]), dflt.get('RETagTechnology')) for ft in 

FUEL_TECHNOLOGY]) >= REMinProductionTarget.get(ci(ry), 

dflt.get('REMinProductionTarget')) * 

RETotalProductionOfTargetFuelAnnual.get(ci(ry)), "" 

 

        # for rfty in REGION_FUEL_TECHNOLOGY_YEAR: 

        #     # RE5_FuelUseByTechnologyAnnual 

        #     model += UseByTechnologyAnnual.get(ci(rfty)) == 

pulp.lpSum([RateOfUseByTechnology.get(ci([*rfty[0:2], l, *rfty[2:4]])) * 

YearSplit.get(ci([l, rfty[3]])) for l in TIMESLICE]), "" 

 

        # ====  Emissions Accounting  ==== 

 

        for remty in 

REGION_EMISSION_MODE_OF_OPERATION_TECHNOLOGY_YEAR: 

            # E1_AnnualEmissionProductionByMode 

            model += AnnualTechnologyEmissionByMode.get(ci(remty)) == 

EmissionActivityRatio.get(ci(remty), dflt.get('EmissionActivityRatio')) * 

TotalAnnualTechnologyActivityByMode.get(ci([remty[0], *remty[2:5]])), "" 
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        for rety in REGION_EMISSION_TECHNOLOGY_YEAR: 

            # E2_AnnualEmissionProduction 

            model += AnnualTechnologyEmission.get(ci(rety)) == 

pulp.lpSum([AnnualTechnologyEmissionByMode.get(ci([*rety[0:2], m, *rety[2:4]])) for 

m in MODE_OF_OPERATION]), "" 

            # E3_EmissionsPenaltyByTechAndEmission 

            model += AnnualTechnologyEmissionPenaltyByEmission.get(ci(rety)) == 

AnnualTechnologyEmission.get(ci(rety)) * EmissionsPenalty.get(ci([*rety[0:2], 

*rety[3]]), dflt.get('EmissionsPenalty')), "" 

            print(EmissionsPenalty.get(ci([*rety[0:2], rety[3]]), 

dflt.get('EmissionsPenalty'))) 

 

        for rty in REGION_TECHNOLOGY_YEAR: 

            # E4_EmissionsPenaltyByTechnology 

            model += AnnualTechnologyEmissionsPenalty.get(ci(rty)) == 

pulp.lpSum([AnnualTechnologyEmissionPenaltyByEmission.get(ci([rty[0], e, 

*rty[1:3]])) for e in EMISSION]), "" 

            # E5_DiscountedEmissionsPenaltyByTechnology 

            model += DiscountedTechnologyEmissionsPenalty.get(ci(rty)) == 

AnnualTechnologyEmissionsPenalty.get(ci(rty)) * (1 / ((1 +  

DiscountRateTech.get(ci(rty[0:2]), dflt.get('DiscountRateTech'))) ** (int(rty[2]) - 

int(min(YEAR)) + 0.5))), "" 

 

        for rey in REGION_EMISSION_YEAR: 

            # E6_EmissionsAccounting1 

            model += AnnualEmissions.get(ci(rey)) == 

pulp.lpSum([AnnualTechnologyEmission.get(ci([*rey[0:2], t, rey[2]])) for t in 

TECHNOLOGY]), "" 

            # E8_AnnualEmissionsLimit 
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            model += AnnualEmissions.get(ci(rey)) <= AnnualEmissionLimit.get(ci(rey), 

dflt.get('AnnualEmissionLimit')) - AnnualExogenousEmission.get(ci(rey), 

dflt.get('AnnualExogenousEmission')), "" 

 

        for re in REGION_EMISSION: 

            # E7_EmissionsAccounting2 

            model += pulp.lpSum([AnnualEmissions.get(ci([*re, y])) for y in YEAR]) == 

ModelPeriodEmissions.get(ci(re)) - ModelPeriodExogenousEmission.get(ci(re), 

dflt.get('ModelPeriodExogenousEmission')), "" 

            # E9_ModelPeriodEmissionsLimit 

            model += ModelPeriodEmissions.get(ci(re)) <= 

ModelPeriodEmissionLimit.get(ci(re), dflt.get('ModelPeriodEmissionLimit')), "" 

 
 


